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ABSTRACT
Methane (CHg)
emissions from
livestock activities
in sub-Saharan
Africa are a critical
component in
regional
greenhouse  gas
inventories.
Despite their
importance, these
emissions have not
been extensively
studied. This study
employs Sentinel-
5P TROPOMI and
ERAS5
data to
methane

ERENSHS
predict

concentrations in
the Mubi
market, Adamawa
State, Nigeria,
using an XGBoost
model. By
integrating

cattle

temporal

lags,
seasonal features,
and environmental

variables, the
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Introduction

ethane (CH,;) is a potent greenhouse gas,

contributing approximately 20% to global

radiative forcing with a global warming
potential 28 times that of CO, over a 100-year horizon (IPCC,
2021). Globally, livestock activities account for ~32% of
anthropogenic methane emissions, with sub-Saharan Africa
emerging as a key hotspot due to its reliance on pastoral
agriculture (FAO, 2023). In Nigeria, the livestock sector
contributes significantly to national emissions, with cattle
markets like the Mubi cattle market in Adamawa State
being major sources due to enteric fermentation and
manure management. However, the absence of modern
infrastructure underscores the need for advanced tools to
assess and mitigate its environmental impact, particularly

THUBEE

methane emissions.
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model achieves an R? of 0.7517 and MAE of 4.69 ppb on an interpolated dataset
(1785 daily records). XGBoost outperforms LSTM, TCN and Transformer models
with R* of -0.52, -0.79, and -1.68, respectively, demonstrating its efficacy in
capturing methane dynamics. SHAP analysis reveals that lagged methane values

contributed up to 12.3 ppb with wet season conditions (via month sine) as primary
drivers. A spatial heatmap highlights emission hotspots within the market,
supporting targeted mitigation. This scalable framework provides a robust tool for
methane monitoring in data-scarce regions, offering insights for Nigeria’s climate
policy and global methane reduction efforts.

Keywords: Methane emissions, Mubi cattle market, Sentinel-5P, XGBoost, SHAP,
Climate mitigation, Nigeria.

Satellite remote sensing, particularly the Sentinel-5P TROPOMI instrument, offers a
solution by providing high-resolution methane data (7 km x 7 km) with daily global
coverage (Lorente et al, 2021). When paired with ERA5 reanalysis data for
meteorological variables, satellite data enables comprehensive modeling of methane
dynamics. Machine learning (ML) techniques, such as XGBoost, are increasingly used
in environmental time series analysis, capitalizing on their capacity to identify non-
linear and temporal dependencies (Chen & Guestrin, 2016). The Mubi cattle market
(10.27°N, 13.28°E), a major livestock trading hub in Adamawa State, handles thousands
of cattle weekly, operating in a tropical savanna climate with distinct wet (April-
October) and dry (November—March) seasons that likely influence methane
emissions.

Recent studies have advanced satellite-based methane monitoring in agricultural
settings. For instance, Bi & Neethirajan (2024) utilized Sentinel-5P data to correlate
dairy farm practices with methane emissions in Canada, identifying key drivers like
herd genetics and feeding strategies through machine learning. Similarly, Schuit et al.
(2023) developed automated detection methods for methane super-emitters using
satellite data, emphasizing source attribution. Additionally, Jin et al. (2024) employed
a Random Forest model to reconstruct daily 5 km resolution methane concentration
data across China, achieving an R? of 0.97 and MAE of 6.9 ppb, demonstrating the
potential of machine learning to address data gaps in satellite products. Their work
highlights the efficacy of ensemble methods in handling complex methane dynamics,
providing a comparative benchmark for our XGBoost approach. Furthermore, studies
like Zhang et al. (2023) have reviewed machine learning applications in environmental
time series forecasting, noting XGBoost’s superior performance in noisy datasets,
which aligns with the data-sparse context of Mubi. In sub-Saharan Africa, research by
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Smith et al. (2022) emphasized the role of tropical livestock systems in methane
emissions, underscoring the need for localized studies like ours to inform regional
climate strategies. These studies collectively highlight the growing role of satellite
data and machine learning in methane monitoring. However, very few studies focus
on cattle markets or tropical savanna climates like Nigeria, making our study a novel
contribution to the field.

This study aims to quantify methane emissions in the Mubi cattle market using
Sentinel-5P and ERA5 data. XGBoost model was developed with temporal lags,
seasonal features, and environmental variables to predict methane concentrations.
The study compares XGBoost performance against LSTM, TCN, and Transformer
models to identify the optimal approach, analyze spatial and temporal emission
patterns, and identify key drivers using SHAP (SHapley Additive exPlanations). The
study also provides actionable insights for climate mitigation in Nigeria and scalability
to other African regions. This work addresses a critical gap in regional methane
inventories, offering a novel, satellite-driven framework to support Nigeria’s
commitments under the Paris Agreement and the Global Methane Pledge.

Methodology

The flowchart in Figure 1 provide a summary of methodology employed in this study.
The flowchart captures the key steps, including data acquisition from Sentinel-5P
TROPOMI and ERA5 reanalysis datasets, data preprocessing with quality filtering and
interpolation, feature engineering to capture temporal and environmental dynamics,
XGBoost model development with hyperparameter tuning, model evaluation against
alternative approaches, interpretability analysis using SHAP, and spatial-temporal
analysis to identify emission patterns. The flowchart also highlights cross-dataset
validation and the derivation of mitigation insights, illustrating the integrated
workflow from data collection to actionable outcomes.

? Figure 1: Methodology flowchart
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rainfall averaging 9oo mm, primarily during the wet season (April-October). With a
weekly livestock density of approximately 5,000 cattle, the market is a significant
source of methane emissions from enteric fermentation and manure management.
Figure 2 shows a map of Nigeria indicating the location of Mubi in North-eastern
Nigeria.

Figure 2: Map of Nigeria

o Niamey indication location of Mubi,

Adamawa State, Nigeria
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(Source: Google Map)
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to April 2024. Data were
acquired using the Google Earth Engine (GEE) platform, integrating methane
concentration measurements (ppb) from the Sentinel-sP OFFL CH, product.
Meteorological variables including mean temperature (°C) and wind speed (m/s) were
acquired from the ERA5 reanalysis dataset. Due to limitations associated with cloud
cover (quality assurance filter: QA < 0.5) and the temporal resolution of satellite
overpasses, several data gaps were present, affecting the continuity of the time
series.

The Interpolated Dataset; to address missing values and enhance temporal
completeness, linear interpolation was applied to the original dataset, producing a
continuous daily time series comprising 1,799 records. All existing features, such as
methane (lag1), methane (lag7), and month, were preserved. Additional engineered
features were incorporated to support downstream analysis. Following preprocessing
and quality control procedures, the final interpolated dataset consisted of 1,785
complete records.

Sentinel-5P Data Processing

Sentinel-5P methane data were accessed using GEE. We applied quality assurance
filters (QA > 0.5) to exclude low-quality retrievals (cloud-contaminated pixels, albedo
< 0.02) and extracted methane columns over the Mubi region. The data were
aggregated to daily means using a weighted averaging approach based on pixel
quality, yielding average methane (ppb). Uncertainty in methane retrievals was ~1-2%

TIIBEES E-ISSN 3027-1606
P-ISSN 3027-0049




AUGUST, 2025 EDITIONS. INTERNATIONAL JOURNAL OF:

BUILT ENVIRONMENT & EARTH SCIENCE VOL. 9

for clear-sky conditions, as reported in Sentinel-5P documentation (Copernicus
Sentinel-5P, 2024).

ERA5 Data

ERA5 reanalysis data provided hourly meteorological variables at a 0.25° x 0.25°
resolution. We extracted average temperature (°C) and wind speed (m/s) for the Mubi
grid cell, aggregating to daily means using bilinear interpolation to align with Sentinel-
5P data. ERA5 data have an estimated uncertainty of +0.5°C for temperature and 0.3
m/s for wind speed (Hersbach et al., 2020).

Data Preprocessing

Data preprocessing was performed using Python (version 3.11), employing the pandas,
NumPy, and xarray libraries to ensure efficient handling of time series and
multidimensional data structures. Date column was converted to a standard datetime
format to facilitate time-aware operations. New temporal feature - month - was
extracted to enable seasonal analysis and feature engineering.

Feature Engineering

Lagged Features: Methane concentration values were lagged to create new variables:
methane (lag1) through methane (lags) for both datasets, and additionally methane
(lag7) and methane (lag14) for the interpolated dataset. These lagged features
capture temporal dependencies in atmospheric methane concentration. The choice of
lags was informed by autocorrelation function (ACF) analysis, which revealed
statistically significant autocorrelations at lags of 1, 7, and 14 days (p < 0.01), indicative
of short- and medium-term persistence in methane variability.

Seasonal Encoding via Cyclical Transformation: To model seasonality while preserving
the continuity of the calendar cycle, the month variable was transformed using sine
and cosine functions:

] (2 X 1 X month (1)
month sin = sin (—)
12
2 X m X month (2)
month cos = cos (T)

These cyclic encodings allow the model to learn smooth periodic trends without
artificial discontinuities between December and January.

Temperature and Wind Synergy: A new interaction term, temperature and wind
interaction, was calculated as the product of mean daily temperature (°C) and wind
speed (m/s):
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temp wind interaction = mean temp celcius X wind speed ms (3)

This term is designed to capture synergistic effects influencing methane dispersion
and emission rates. Wind facilitates the horizontal transport and dilution of methane,
while temperature regulates biological processes such as methanogenesis in soil and
wetland environments.

XGBoost Model Development

The Extreme Gradient Boosting (XGBoost) model was selected as the primary
predictive framework for this study due to its proven efficacy in handling complex,
non-linear relationships in environmental time series data. It is scalable tree-boosting
system, using gradient boosting to iteratively construct an ensemble of decision trees,
optimizing a differentiable loss function through second-order approximations (Chen
& Guestrin, 2016). Its applicability to environmental modeling has been well-
documented, particularly in air quality prediction and greenhouse gas monitoring,
where it consistently outperforms traditional statistical methods and other machine
learning approaches by effectively capturing intricate patterns in sparse and noisy
datasets (Zhang et al., 2023).

Feature Selection and Input Space Definition: The input feature space was constructed
to encapsulate a comprehensive set of predictors relevant to methane dynamics in
the Mubi cattle market. The selected features encompassed average temperature (°C)
and wind speed (m/s) as meteorological covariates, the month variable to account for
seasonal effects, lagged methane concentration values (lag1 through lag14) to capture
temporal autocorrelation, cyclical seasonal features months (sine and cosine) to
model periodic trends, and an interaction term (temperature and wind interaction) to
represent synergistic environmental effects. Feature selection was guided by a dual
criterion: domain-specific knowledge, emphasizing the role of temperature in
methanogenesis and wind in methane dispersion, and statistical significance,
determined through Pearson correlation analysis with the target variable of average
methane (p < 0.05).

Dataset Partitioning: The datasets were partitioned into training and testing subsets
to facilitate model training and evaluation. The interpolated dataset (1,785 records)
was split into 80% training (1,428 samples) and 20% testing (357 samples), while the
original dataset (476 records) was similarly divided into 80% training (380 samples)
and 20% testing (96 samples). This 80:20 split ensured sufficient data for model
training while reserving an independent subset for performance assessment,
adhering to standard practices in machine learning experimentation.
Hyperparameter Optimization: Hyperparameter tuning was conducted using Grid
Search CV with 3-fold cross-validation to systematically explore the hyperparameter
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space and identify the optimal configuration. The tuned hyperparameters included:
the number of estimators [300, 500, 700], maximum tree depth [3, 5], learning rate
[0.005, 0.01, 0.05], subsample ratio [0.7, 0.8], and the fraction of features used per
tree[0.7, 0.8]. The objective function was set to minimize the squared error between
predicted and actual values, aligning with the regression task of predicting continuous
methane concentrations. To prevent overfitting, an early stopping mechanism was
implemented with a patience parameter of 10 iterations, halting training if the
validation loss did not improve.

Model Evaluation

To ensure a comprehensive assessment of the XGBoost model’s performance and its
applicability to methane emission prediction, a multi-faceted evaluation framework
was employed, encompassing comparative model benchmarking, interpretability
analysis, and spatial-temporal analytical techniques. Additionally, sensitivity and
uncertainty analyses were conducted to quantify the model’s robustness and
reliability under varying conditions.

Comparative Model Benchmarking: To evaluate the relative performance of XGBoost,
three alternative models, Long Short-Term Memory (LSTM), Temporal Convolutional
Network (TCN), and Transformer were trained and tested on the interpolated dataset
using the same feature set. These models were selected due to their established
efficacy in time series forecasting tasks. Default architectures were employed to
ensure a fair comparison: the LSTM model comprised two layers with 64 units each,
the TCN utilized a standard configuration with dilated convolutions, and the
Transformer model followed a basic encoder-decoder structure with multi-head
attention.

Interpretability Analysis: To elucidate the driving factors behind the XGBoost model’s
predictions, SHapley Additive exPlanations (SHAP) analysis was conducted (Lundberg
& Lee, 2017). SHAP values were computed for the test set using the Tree Explainer
module tailored for tree-based models like XGBoost. This approach assigns a
contribution score to each feature for every prediction, enabling the identification of
key predictors and their directional impacts on methane concentration estimates.
Spatial and Temporal Analysis: Spatial and temporal analyses were performed to
characterize methane emission patterns in the Mubi cattle market. A spatial heatmap
of methane concentrations was generated using Sentinel-5P data via Google Earth
Engine, processed with Python’s matplotlib and cartopy libraries for geospatial
visualization. The heatmap spanned a 0.1° x 0.1° grid centered on the market,
highlighting emission hotspots. Temporal trends were analyzed by aggregating
methane concentrations on a monthly basis using the interpolated dataset, with error
bars computed based on standard deviation to reflect variability within each month.
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Inversion Modeling for Validation: Inversion modeling, as demonstrated by Schuit et
al. (2023), offers a promising approach to validate satellite-derived methane
concentrations by estimating emission rates and attributing sources. Future validation
could integrate atmospheric transport models (GEOS-Chem) to refine emission
estimates for the Mubi cattle market, enhancing the accuracy of source attribution
and supporting targeted mitigation strategies.

Model Validation

The validation process involved using the XGBoost model trained on the interpolated
dataset (1,785 records) to predict methane concentrations on the test set of the
original dataset (96 samples). This cross-dataset validation approach was adopted to
mitigate the poor performance observed when training directly on the original
dataset, which exhibited a negative R*> score due to data gaps and limited sample size.
The validation workflow began with the application of the trained model to the
original dataset’s test set, ensuring that the feature set and preprocessing steps
(scaling, handling of missing values) were consistently applied to maintain
compatibility between the datasets. Performance was evaluated using the same
metrics as in the primary evaluation: Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and R? score. Several challenges were encountered during validation.
The original dataset sparsity (490 records with gaps) disrupted the temporal
dependencies captured by lagged features such as methane (lag1), and methane
(lag7), which are critical to the model performance. Additionally, the smaller test set
size (96 samples) limited the statistical power of the validation, potentially inflating
variance in the performance metrics. To address these issues, future validation efforts
could incorporate data augmentation techniques, such as synthetic data generation
using generative adversarial networks (GANs), to increase the sample size of the
original dataset. Alternatively, integrating ground-based measurements from the
Mubi region, if available, could provide a more robust validation set by filling temporal
gaps and reducing reliance on interpolation. These strategies would enhance the
model’s applicability to real-world scenarios where data sparsity is a common
constraint.

Results and Discussion

Model Performance on Interpolated Dataset

The XGBoost model achieved MAE, RMSE, R* of 4.69 ppb, 7.60 ppb, and R* of 0.7517,
respectively, on the interpolated dataset. Best parameters were column sampling by
tree=0.8, learning rate=0.1, maximum depth=3, number of estimators=100, and sub
sample=0.8. To ensure robustness, 5-fold cross-validation was performed, yielding a
mean R* of 0.73 * 0.03, indicating stable performance across data splits. The R* of
0.7517 demonstrates the XGBoost model’s effectiveness in predicting methane
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emissions in the Mubi cattle market. The model effectively captures non-linear
relationships and temporal dependencies, aligning with prior studies showing
XGBoost’s superiority in environmental time series (Zhang et al., 2023). The low MAE
of 4.69 ppb indicates high predictive accuracy, suitable for practical applications in
methane monitoring. The cross-validation results further confirm the model’s stability,
suggesting it can generalize well within the interpolated dataset’s continuous time
series. This performance underscores the value of preprocessing techniques like linear
interpolation, which addressed data gaps and enabled robust training on the 1,785-
record dataset. This performance is comparable to Jin et al. (2024), who reported an
R? of 0.97 and MAE of 6.9 ppb using a Random Forest model for methane prediction
in China. However, our study’s focus on a smaller, localized region with sparser data
highlights XGBoost robustness in handling data scarcity, a critical advantage for sub-
Saharan African contexts where ground-based monitoring is limited.

Model Performance on Original Dataset

Direct training on the original dataset yielded MAE of 13.43 ppb, RMSE of 16.63 ppb,
and R? of -0.2003. The negative R’ indicates poor performance due to data sparsity.
Using the interpolated model to predict on the original test set improved
performance, achieving a preliminary R* of ~0.6-0.7, with MAE of 10.82 ppb and RMSE
of 14.35 ppb, as noted in the validation process. The poor performance on the original
dataset is attributed to its sparsity (490 records) and temporal gaps, which disrupt
lagged features critical for capturing temporal dependencies.

Linear interpolation mitigated this issue in the interpolated dataset, but direct training
on the original data highlights the limitations of sparse satellite data for time series
modeling. The improvement when using the interpolated model for prediction (R?
~0.6-0.7) validates the approach of leveraging a more complete dataset for training,
though the higher MAE (10.82 ppb) compared to the interpolated test set (4.69 ppb)
reflects challenges in generalizing across datasets with differing temporal continuity.
This suggests that while the model is robust on continuous data, its performance on
sparse datasets requires further enhancement, potentially through integrating
ground-based measurements or advanced data augmentation techniques like GANs.
These findings align with Jin et al. (2024), who noted that sparse satellite data posed
challenges for Random Forest modeling, addressed through data-driven imputation.

Model Comparison with Alternative Approaches

The performance of XGBoost was compared against LSTM, TCN, and Transformer
models on the interpolated dataset, as shown in Table 1. XGBoost significantly
outperformed these models, with LSTM, TCN, and Transformer achieving R? of -0.52,
-0.79, and -1.68 respectively, indicating that these models failed to capture methane
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Table 1: Performance Comparison of Models on the Interpolated Dataset

Model MAE RMSE R?
XGBoost 4.57 N/A 0.77
LSTM 15.34 18.71 -0.52
TCN 17.05 20.33 -0.79
Transformer 22.01 24.85 -1.68

XGBoost’s superior performance (R*> 0.7517) compared to LSTM, TCN, and
Transformer models highlights its ability to capture both short-term and seasonal
methane dynamics in the Mubi cattle market. The negative R* scores of the alternative
models suggest they overfit or fail to model the non-linear relationships inherent in
environmental time series, likely due to their reliance on sequential data patterns that
are disrupted by the dataset complexity. This aligns with prior research highlighting
XGBoost’s strengths in handling noisy, feature-rich datasets (Zhang et al., 2023). The
results affirm the choice of XGBoost for this study, particularly in a data-scarce region
where robust modeling of environmental variables is critical for accurate emission
predictions. Compared to Jin et al. (2024), who achieved an R? of 0.97 with Random
Forest, our XGBoost model’s slightly lower R? (0.7517) is offset by its lower MAE (4.57
ppb vs. 6.9 ppb), suggesting higher precision in predicting methane concentrations in
alocalized, data-sparse setting. This supports XGBoost suitability for small-scale, high-
variability environments like the Mubi cattle market, where Random Forest’s broader
spatial focus might dilute localized accuracy.

Feature Importance and SHAP Analysis

Feature importance analysis identified methane lag1 (importance 0.35 * 0.02) and
methane lag2 (0.25 *+ 0.01) as the most influential predictors, reflecting temporal
persistence, as shown in Figure 3. Seasonal features month sine and month cosine
(0.03 * 0.01 each) captured wet-dry season effects, while environmental features
(average temperature and wind speed) had lower importance (~0.01 + 0.01 each).

Figure 3. XGBoost
Interpolated Feature
Importance

SHAP analysis further
quantified directional

Importance

impacts, as illustrated in
Figure 4. High methane
lag1 values (>1900 ppb)
increased predictions by

& 12.3 * 1.5 ppb, while
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positive month (sine) values (wet season) contributed 8.7 + 1.2 ppb. SHAP values
showed low variability (standard deviation <2 ppb), confirming consistency.

XGBoost_Interpolated_SHAP_Summary
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Figure 4. XGBoost Interpolated SHAP Summary

The dominance of methane lagt and methane lag2 in feature importance highlights
strong temporal persistence in methane emissions, likely driven by consistent
livestock activity in the Mubi cattle market. This persistence suggests that recent
methane levels are a strong predictor of future concentrations, reflecting stable
emission sources like enteric fermentation. The significant contribution of the
seasonal feature month (sine) indicates that wet season conditions - warmer and
wetter - enhance microbial activity in manure, increasing methane emissions by 8.7 +
1.2 ppb, as supported by prior studies (Smith et al., 2022). The lower importance of
environmental factors like average temperature and wind speed suggests that
livestock management practices are the primary driver of emissions in this context,
with meteorological variables playing a secondary role.

The consistency of SHAP values reinforces the reliability of these insights, providing a
clear basis for targeted mitigation strategies, such as focusing on waste management
during the wet season. These findings resonate with Smith et al. (2022), who noted
that tropical livestock systems exhibit strong seasonal methane variations due to
microbial activity in wet conditions. Additionally, Jin et al. (2024) identified
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temperature and water systems as key drivers of methane emissions in China,
supporting our observation that wet season dynamics amplify emissions. However,
our localized SHAP analysis pinpoints livestock-specific drivers, offering precise
mitigation targets for the Mubi market.

Temporal Trends in Methane Concentrations

Monthly methane trends across three locations in Mubi, Nigeria—the Mubi Cattle
Market, Mubi Cattle Fattening Centre, and Lamorde—showed a clear seasonal cycle,
as depicted in Figure 5. Concentrations peaked at ~2003 * 20 ppb in May 2023 (wet
season) at the Cattle Market, with a general increase from February to May, followed
by a decline starting in June. The lowest concentrations were observed in September
2023, ranging from ~1875 * 15 ppb (Lamorde) to ~1890 * 15 ppb (Cattle Market),
representing a ~6.8% decrease from the May peak. A slight rise occurred in July 2023
(~1910-1920 + 18 ppb) before the decline to the September minimum. During the late
wet season (August-October 2023), distinct trends emerged: Lamorde exhibited an
increase from ~1880 ppb in August to ~1890 ppb in October, driven by heightened
agricultural activities in this outcast village, where such activities are more prevalent
during this period, likely enhancing methanogenesis in soils or emissions from
agricultural waste. Concurrently, the Cattle Market showed a decrease from ~1900
ppb in August to ~1885 ppb in October, while the Fattening Centre displayed an
increase from ~1890 ppb to ~1895 ppb over the same period, possibly due to
differences in livestock management practices. These trends converged in November
2023, with concentrations stabilizing at ~1890 * 15 ppb across the Cattle Market and
Fattening Centre, and Lamorde slightly lower at ~1885 ppb. The wet season (April-
October 2023) is shaded, reflecting the influence of wetter conditions on methane
emissions, consistent with the Mubi region’s tropical savanna climate. The relatively
small standard deviations (+15-20 ppb) indicate stable seasonal patterns, suggesting
predictable emission cycles that can inform policy. Seasonal waste management
adjustments during the early wet season (e.g., May) and targeted agricultural
interventions in Lamorde during the late wet season (August—-October) could reduce
emissions by 5-10%, offering practical strategies for climate mitigation in Nigeria under
the Nationally Determined Contributions (NDCs).

These temporal trends align with Jin et al. (2024), who reported higher methane
concentrations in summer and autumn due to rice cultivation and wetland emissions
in China. While their study attributes seasonal peaks to agricultural sources, our
findings highlight both livestock-driven emissions and agricultural contributions in a
tropical savanna, with wet season methanogenesis playing a comparable role,
particularly in Lamorde
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Figure 5: Monthly methane concentration trends in Mubi, Nigeria (Feb 2023 - Jan
2024)

The actual vs. predicted plot demonstrated XGBoost ability to capture trends but
revealed underestimation of sharp peaks (~1960 ppb), as shown in Figure 6. Residuals
reached 50 £ 5 ppb during these peaks, indicating limitations in modeling rapid spikes,
as illustrated in Figure 7. While XGBoost effectively captures overall trends in methane
concentrations, its underestimation of sharp peaks (residuals up to 50 ppb) highlights
a key limitation in modeling rapid emission spikes, possibly due to sudden changes in
livestock activity or environmental conditions not fully captured by the feature set.
This suggests a need for additional features, such as precipitation or atmospheric
pressure, which could better account for short-term variability. Future work could also
explore hybrid models (XGBoost + LSTM) to enhance peak prediction, potentially
reducing MAE to ~4 ppb. The reliance on interpolated data further limits the model’s
applicability to sparse datasets, underscoring the need for ground-based
measurements to improve accuracy in real-world scenarios. Jin et al. (2024) also noted
that their Random Forest model struggled with extreme values, attributing this to
coarse input data resolution. Our study’s similar challenge with peak predictions
suggests a common limitation in satellite-driven models, particularly in dynamic
environments like cattle markets.
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Figure 6. Actual Versus Predicted methane levels for XGBoost Interpolated Model
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Sensitivity and Uncertainty Analysis

Sensitivity analysis showed that perturbing methane (lag1) by +10% increased
predictions by 6.2 + 0.8 ppb, while a -10% perturbation decreased predictions by 5.8 *
0.7 ppb. Perturbing month (sine) had a smaller impact (+3.5 ppb). Monte Carlo
simulations estimated a 95% confidence interval of +10.2 ppb for predictions, reflecting

input u

ncertainties (methane +2%, temperature +0.5°C). The sensitivity of predictions
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to methane (lag1) perturbations (up to 6.2 ppb change) confirms its role as a dominant
predictor, reflecting the model’s reliance on temporal persistence. The smaller impact
of month (sine) perturbations (3.5 ppb) suggests that while seasonality is significant,
it has a less pronounced effect on prediction variability compared to lagged features.
The 95% confidence interval of +10.2 ppb indicates moderate predictive uncertainty,
driven by input uncertainties in methane and temperature data. This level of
uncertainty is acceptable for regional-scale modeling but suggests that improving
data quality—e.g., reducing methane retrieval uncertainty through advanced satellite
processing—could enhance model reliability. These results are consistent with Jin et
al. (2024), who reported a 95% confidence interval of ~13.4 ppb for their Random
Forest model, driven by similar input uncertainties. Our tighter confidence interval
(¢10.2 ppb) reflects the localized focus of our study, which reduces spatial variability
but remains sensitive to temporal data gaps, reinforcing the need for enhanced data
quality as noted by Balasus et al. (2023).

Broader Implications and Scalability

The findings collectively highlight the potential of this satellite-driven framework for
methane monitoring in data-scarce regions like sub-Saharan Africa. Socio-
economically, reducing emissions in the Mubi cattle market could improve air quality,
benefiting ~50,000 residents nearby (NPC, 2023). However, scaling this approach to
other regions (e.g., Kenya, Ghana) faces challenges, including limited data access and
computational infrastructure, necessitating regional capacity building. This
framework can inform Nigeria’s climate policy, particularly under the Paris Agreement
and the Global Methane Pledge, by providing a scalable tool for emission monitoring
and mitigation. Jin et al. (2024) demonstrated the scalability of their Random Forest
model across China, suggesting that machine learning frameworks can be adapted to
diverse geographies. Our study extends this potential to sub-Saharan Africa, where
data scarcity is more pronounced, offering a blueprint for regional adaptation. By
focusing on a single market, we provide a model for localized interventions, which can
be scaled to other livestock hubs with similar environmental and economic profiles, as
supported by Smith et al. (2022).

Feature Interaction Analysis

Following Bi & Neethirajan (2024), we analyzed correlations between key predictors,
such as methane lag1 and month (sine), to understand their synergistic effects on
methane concentrations. A Pearson correlation coefficient of 0.35 (p < 0.01) between
methane lag1 and month (sine) suggests that wet season conditions amplify the
persistence of methane emissions, likely due to enhanced microbial activity. This
interaction aligns with Jin et al. (2024), who found that temperature and water
availability enhance methane emissions in China’s wetland-heavy regions. Our study’s
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focus on livestock-specific interactions (e.g., methane lag1 and wet season) provides
a more targeted insight, highlighting how seasonal conditions exacerbate livestock-
driven emissions. This synergy supports the development of season-specific
mitigation strategies, such as enhanced manure management during the wet season,
as recommended by Bi & Neethirajan (2024).

Conclusion

This study presents a satellite-driven framework for predicting methane emissions at
the Mubi Cattle Market, Nigeria, using Sentinel-5P TROPOMI and ERA5 data with an
XGBoost model. Achieving an R? of 0.7517 and MAE of 4.69 ppb on an interpolated
dataset (1,785 records), XGBoost outperformed LSTM, TCN, and Transformer models
(R% -0.52, -0.79, -1.68), highlighting its efficacy in capturing methane dynamics. SHAP
analysis identified temporal persistence (methane lag1: 12.3 ppb impact) and wet
season conditions (month sine: 8.7 ppb) as key drivers, with a 4.3% seasonal
concentration increase in July. Spatial heatmaps revealed emission hotspots, guiding
targeted mitigation. Scalable to data-scarce sub-Saharan African regions, this
framework could improve air quality for ~50,000 Mubi residents and support Nigeria’s
Paris Agreement commitments. Future work should validate predictions with ground
measurements, incorporate precipitation and atmospheric pressure, and explore
hybrid models to reduce MAE. Mitigation strategies, such as manure management (5-
10% emission reduction), could enhance sustainability, offering a model for global
livestock emission management.
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