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Introduction 
ggressive urbanization continues to be a challenge 

to water infrastructure, especially for megacities 

such as  Olabode, et al (2024) Lagos, whose 

wastewater Tajudeen, K. A. (2024) tends to bear a complex 

group of emerging contaminants (ECs), i.e., 

pharmaceuticals, endocrine disruptors, personal care 

products, and microplastics Nurmin Bolong, et al  (2009). 

Such contaminants can live through usual treatment plants 

and exert increasing threats to public health and aquatic  
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ABSTRACT 
The increasing 

occurrence of new 

contaminants (ECs) 

like 

pharmaceuticals, 

endocrine-

disrupting 

chemicals (EDCs), 

personal care 

products, and 

microplastics in 

urban wastewater 

treatment plants 

has raised 

gargantuan 

environmental and 

public health 

concerns, 

especially in fast-

growing urban 

cities like Nigeria. 

Conventional 

analytical tools, 

although efficient, 

have the risk of 

employing toxic 

reagents, handling 

big samples, and 

demanding energy-

hungry equipment.  
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ecosystems Xingyu Li, et al (2024. Conventional analytical procedures even though 

efficient rely on dangerous solvents, consume lots of energy, and need long sample 

preparation, which makes them less suitable for cheap and sustainable monitoring. 

Green analytical chemistry (GAC) presents an opportunity for environmental footprint 

reduction through the adoption of solvent-free saving, energy-efficient, and 

reproducible methods. Anil Kumar Meher, et al (2025) SPME and the like are the 

Therefore, this research pursues a green analytical chemistry (GAC) approach to 

design and validate low-cost, sensitive, and green methods for tracking ECs in 

wastewater in urban settings. A MultiTech Nique strategy was employed that 

combined solid-phase microextraction (SPME), dispersive liquid–liquid 

microextraction (DLLME), and microwave-assisted extraction (MAE) with high-

end detection platforms like liquid chromatography-tandem mass spectrometry 

(LC-MS/MS) and Fourier-transform infrared spectroscopy (FTIR). These green 

chemistry and analytical sample preparation methods were developed to reduce 

energy requirements and solvent consumption and increase extraction efficiency 

and reproducibility. These selected ECs, i.e., acetaminophen, triclosan, bisphenol 

A, and carbamazepine, were screened in influent and effluent wastewater samples 

from three Lagos municipal wastewater treatment works, Nigeria. For the 

improvement of analytical performance and interpretation of results, PCA ML 

algorithms, RF, and SVM were incorporated into the workflow for contaminant 

classification prediction, pattern identification, and estimation of removal 

efficiency in treatment plants. The models were over 90% precise for contaminant 

classification and had good predictive capability for EC concentration. Findings 

indicated the extensive use of ECs in influent and treated wastewater, where some 

compounds surpassed ecotoxicological safety levels. Green analysis methods 

demonstrated similar or better detection capability than the traditional methods 

and met GAC requirements. In addition, ML-enhanced data analytics engaged 

more insight into contaminant behaviour and supported real-time decision-making 

to control water quality. This study highlights the potential for combining green 

chemistry concepts with smart data analytics in designing sustainable monitoring 

systems for low-cost ECs for urban wastewater. The study presents an applicable 

solution for developing countries to promote environmental monitoring, minimize 

ecological hazard, and support international initiatives toward UN Sustainable 

Development Goals (SDGs) 6 and 12. 

 
Keywords: Emerging Contaminants, Urban Wastewater, Sustainable Monitoring, 

Solid-Phase Microextraction, Dispersive Liquid, Liquid Microextraction, 

Microwave-Assisted Extraction, Spectroscopy 
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quintessential realizations of GAC at work, facilitating high-sensitivity, reproducible 

solvent-free extraction hands down the hip, green alternative to conventional liquid-

phase approaches. While this is happening, DLLME has been increasingly popular 

because it requires minimal solvent, achieves rapid equilibration, and provides 

excellent analyte recovery particularly for the analysis of drugs in water matrices. 

Martins,et al (2025) Such protocols can be directly interfaced with advanced analytical 

systems such as LC-MS/MS and FTIR for accurate identification and determination. 

Outside the lab bench, machine learning (ML) is becoming a main propelling force for 

the interpretation of complex environmental data. Although its complete potential in 

ECs of Nigerian wastewater is in its early stages, the utility Sanja Cojbasi, et al (2022),of 

ML in more general water quality forecasting and analysis is already well documented. 

Omeka et al., for example, monitored ML water quality observation trends in Nigeria 

(2003–2024) and found an essential gap and the necessity for more advanced, hybrid 

models. 
Concurrently, Hassan (2025) showed the capability of ML in municipal wastewater 

treatment, wherein models were utilized to forecast effluent quality under dynamic 

organic loadings with superior compliance performance 

RSC Publishing 

Moving from a local standpoint, Taiwo et al. (2025) suggested an integrated water 

management system in Lagos comprising IoT-based sensor integration, remote 

monitoring, and ML-based decision-making to tackle urban pollution sustainably 

Okechi Favour, et al (2023) Collectively, these advances in methodology facilitate a 

new, multi-analytical green method suited to Lagos's wastewater scenario coupling 

SPME, DLLME, and possibly MAE with LC-MS/MS and FTIR detection, supported by ML 

modules (e.g., PCA, RF, SVM) for contaminant identification, pattern recognition, and 

concentration estimation. This method not only ensures proper detection at negligible 

environmental expense but also supports responsive data-based management 

interventions aligned with SDGs 6 (Clean Water & Sanitation) and 12 (Responsible 

Consumption & Production). 

 

Problem Statement 

Rapidly expanding urban cities like Lagos, Nigeria, are facing mounting challenges 

from the presence of emerging contaminants (ECs) like pharmaceuticals, personal 

care products, endocrine-disrupting chemicals, and microplastics. These ECs are not 

adequately removed by standard treatment processes and remain in effluents with 

potential aquatic ecosystem, biodiversity, and human health concerns via 

bioaccumulation and water reuse. Conventional monitoring techniques, though 

https://www.researchgate.net/profile/Sanja-Cojbasic?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/scientific-contributions/Okechi-Favour-2266536186?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
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precise, are highly reliant on toxic solvents, power-consuming apparatus, and labour-

intensive procedures, making them costly and difficult to implement in low-resource 

contexts. 

Furthermore, there are no data-based and analytical monitoring plans in Nigeria that 

are integrated, where ECs research is lacking despite increased urbanization and 

industrial effluent. Existing surveillance practices give limited data with regard to the 

fate of contaminants, treatment effectiveness, and long-term environmental 

consequence. This generates an urgent requirement for inexpensive, green, and 

smart surveillance systems integrating Green Analytical Chemistry (GAC) methods 

with Machine Learning (ML) analysis. It would not only enhance contaminant 

identification but also enable decision-making on wastewater management to meet 

the UN Sustainable Development Goals (SDGs) 6 and 12. 

 

Research Questions 

 What are the nature and concentration of emerging contaminants in influent 

and effluent samples of selected municipal wastewater treatment plants in 

Lagos? 

 How efficient are green analytical chemistry-based extraction methods 

(SPME, DLLME, and MAE) in the detection and quantitation of ECs with 

respect to traditional approaches? 

 Do machine learning models (PCA, RF, SVM) enhance classification, prediction, 

and interpretation of EC levels in wastewater samples? 

 To what degree do the integrated green analytical and ML-facilitated methods 

reflect a sustainable and scalable system for urban wastewater management 

in Nigeria? 

 

Objectives of the Study 

 To establish and assess a sustainable monitoring system for impending 

pollutants in Lagos wastewater through the integration of green analytical 

chemistry methodology with machine learning data analytics. 

 To detect and quantify target emerging contaminants (e.g., triclosan, 

acetaminophen, bisphenol A, and carbamazepine) in influent and effluent 

wastewater samples at Lagos municipal treatment plants. 

 Optimization and validation of green analytical chemistry methods (SPME, 

DLLME, and MAE) for extraction and determination of ECs to minimize the use 

of solvent, cost of energy and analysis. 
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 To utilize high-resolution analytical equipment (LC-MS/MS and FTIR) to 

identify chemical fingerprints of known pollutants and monitor treatment 

efficacy. 

 To integrate machine learning techniques (PCA, random forest, and support 

vector machines) to detect pollutants, predict concentrations, and recovery 

efficiency. 

 To compare the sensitivity, reproducibility, cost-effectiveness, and 

sustainability of the integrated green chemistry–ML system with traditional 

monitoring strategies. 

 For the purpose of offering policy recommendation on wastewater 

monitoring in Nigeria, including the adoption of sustainable and smart 

strategies that are synchronized with international environmental protection 

and SDG goals. 

 

Review of related literature  

The occurrence of emerging pollutants (EPs) like pharmaceuticals, endocrine-

disrupting chemicals (EDCs), personal care products, and microplastics Kingsley O 

Iwuozor, et al (2025) in urban wastewater has been reported more and more in recent 

years. Their persistence and their ability to interfere with ecological and human health 

systems have raised concern worldwide (Pal et al., 2014). Conventional wastewater 

treatment plants are not equipped to completely remove these pollutants, and hence 

they are continually released into aquatic systems (Tran et al., 2018). 

 

Green Analytical Chemistry for Wastewater Analysis 

Green Analytical Chemistry (GAC) seeks to minimize environmental imprints by 

lowering the use of solvents, energy requirements, and toxic waste production during 

chemical analysis (Anastas & Eghbali, 2010). Methods like solid-phase microextraction 

(SPME), dispersive liquid–liquid microextraction (DLLME), and microwave-assisted 

extraction (MAE) have gained considerable prominence as efficient alternatives to 

classical extraction methods, allowing sensitive determination of ECs with smaller 

environmental footprints (Rezaee et al., 2006; Rostagno & Prado, 2013). Sample 

preparation protocols are being coupled with high-end detection platforms like LC-

MS/MS and FTIR for reasonable quantification (Ferrer & Thurman, 2012). 
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Figure 1: Analytical Chemistry for Wastewater Analysis.  

 

Why green strategies are imperative in urban wastewater analysis 

Urban wastewater is a key pathway for pharmaceuticals, personal-care items, 

endocrine disruptors, and other emerging pollutants (ECs). Traditional monitoring 

pipes frequently solvent-hungry, energy-inefficient, and waste-generating are finding 

it difficult to keep up with increased analytical demand from dense cities. Green 

Analytical Chemistry provides a platform to reduce toxicity, solvent levels, energy 

consumption, and waste without sacrificing quality data (Gałuszka et al., 2012; 

Psillakis, 2022). 

 

Principles and measures operationalizing "green" 

GAC's 12 principles have been operationalized into empirically usable measures of 

greenness. The Analytical Eco-Scale gives a penalty-point system for reagents, 

hazards, and energy; GAPI scores greenness throughout the workflow; AGREE gives 

one 0–1 value based on the 12 principles; and AGREEprep emphasizes especially 

sample-preparation steps (Gałuszka et al., 2012; Płotka-Wasylka, 2018; Pena-Pereira et 

al., 2020; Wojnowski et al., 2022). These quantifications are employed increasingly to 

compare increasingly sustainable wastewater methods and contrast options in 

method development. 

 

Greener sample-preparation techniques for ECs 

Solvent-reducing, miniaturized extraction procedures form the core of GAC. 
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Solid-phase microextraction (SPME) prevents bulk organic solvents and combines 

sampling, extraction, and preconcentration; it is an effective platform for aqueous 

matrices and trace organics (Arthur & Pawliszyn, 1990; Vas & Vékey, 2004). Dispersive 

liquid–liquid microextraction (DLLME) is fast enrichment with microliter-scale 

solvents and is nowadays a workhorse for ECs of polar-to-moderately nonpolar 

character in water (Rezaee et al., 2006). 

Microwave-assisted extraction (MAE) shortens extraction time and solvent quantities, 

with enhanced recovery from solids/sludges helpful for analysis of sorbed ECs in 

primary/secondary sludge streams (Onuska & Karasek, 1989; López-Avilés et al., 2015). 

Greener solvent systems (deep eutectic solvents, for instance) and miniaturized 

devices increasingly reduce hazard profiles and waste through DLLME/SPME 

procedures in accordance with AGREEprep guidance (Wojnowski et al., 2022). 

 
Figure 2. The 12 principles of Green Analytical Chemistry (GAC) 

 

Chromatographic spectrometric platforms of reduced footprint 

Analytically, UHPLC/LC-MS/MS is still the multi-class EC workhorse; miniaturization to 

shorter columns, sub-2 µm particles, and microflow rates reduces solvent usage per 



 

 
AUGUST, 2025 EDITIONS. INTERNATIONAL JOURNAL OF: 

 

  TIJBEES 
173 

BUILT ENVIRONMENT & EARTH SCIENCE VOL. 9 

E-ISSN 3027-1606 
P-ISSN 3027-0049 

analysis significantly with minimal loss of sensitivity (Gałuszka et al., 2012). Add-on "no-

solvent" or low-solvent detectors like FTIR and handheld spectroscopies offer quick 

ranking and screening to exclude some samples, thus minimizing the overall resource 

budget if used in tiered strategies (Pena-Pereira et al., 2020). 

What is known about ECs in urban wastewater (global and African contexts) 

World syntheses typically report that analgesics, antibiotics, antiepileptics, and 

personal-care antimicrobials are frequently detected in influent and treated effluents 

at concentrations from ng L⁻¹–µg L⁻¹ (Verlicchi et al., 2012; Tran et al., 2018). African 

setting studies also support the signatures of considerable usage and poor removal in 

conventional treatment whereby low-cost greener monitoring protocols are suitable 

for resource-constrained utilities like Ebele et al. (2017), Gumbo et al. (2024), and 

Wilkinson et al. (2023). 

 

Greenness assessment in validation of procedures 

Best practice today combines fitness-for-purpose validation (sensitivity, selectivity, 

ruggedness) with Eco-Scale, GAPI, AGREE, and AGREEprep scorecards to prove that 

greener options are not compromising analytical performance. Double assessment 

(performance + greenness scorecards) is now common in high-impact GAC treatments 

of water (Płotka-Wasylka, 2018; Pena-Pereira et al., 2020; Wojnowski et al., 2022). 

Machine-learning and data-driven assistance to greener monitoring. Since greener 

approaches tend to employ miniaturized prep and multiplexed detection, machine 

learning (ML) is being applied increasingly to (i) classify impurities, (ii) estimate or 

interpolate concentrations where data are sparse, and (iii) predict removal over 

treatment trains. Reviews and case studies indicate that Random Forest, SVM, and 

gradient boosting can supply accurate effluent quality or micropollutant removal 

predictions that facilitate less frequent but more intelligent confirmatory analysis and 

therefore reduced solvent/energy consumption (Haron et al., 2022; Yogarathinam et 

al., 2024; Wang et al., 2021; Huang et al., 2024). 

 

Analytical Advances in EC Detection 

The development of newer, solventless, and automation-friendly analysis methods 

has further facilitated the detection of ECs in wastewater. LC-MS/MS is still the go-to 

technique for trace-level quantitation, but there is evidence from recent publications 

that environmentally friendly methods could equal performance with increased 

sustainability (Hernández et al., 2015). Such developments are particularly beneficial 

for low-resource environments where expensive infrastructure is not readily available. 

 

Machine Learning in Wastewater Analytics 

The application of machine learning (ML) algorithms in environmental monitoring has 

improved predictive modelling and data interpretation. PCA, RF, and SVM algorithms 
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have been successfully used for contaminant classification, pattern recognition, and 

performance evaluation of treatment systems (Cortes & Vapnik, 1995; Breiman, 2001; 

Jolliffe & Cadima, 2016). Recent studies demonstrate that ML enhances knowledge of 

contaminant behaviour and enables predictive assessments of removal effectiveness 

in wastewater treatment plants (Wang et al., 2020). 

 

Knowledge Gaps and Relevance to Urban Africa 

While a majority of large-scale studies were done in Europe, Asia, and North America, 

research on ECs in the cities of Africa, Nigeria in particular, remains limited. 

Urbanization, poor wastewater infrastructure, and augmented pharmaceutical 

consumption enhance EC discharge into aquatic environments (Ebele et al., 2017). This 

information lacuna can be filled up through using green analytical and ML-based 

methodologies that are capable of delivering low-cost, environmentally friendly, and 

reproducible solutions for ECs monitoring in developing countries. 

 

Methodology  

Study Area 

Field work was carried out in Lagos, Nigeria, one of the fastest-growing sub-Saharan 

African cities with high population growth, intense industrialization, and growing use 

of pharmaceutical and cosmetics products. Sewage influent and effluent were 

sampled from three municipal WWTPs that have different treatment technologies and 

urban catchments. 

 

Target Contaminants and Reagents 
The following emerging pollutants (ECs) were selected: acetaminophen, triclosan, 

bisphenol A, and carbamazepine. The said above ECs were selected considering their 

common occurrence in wastewater and ecotoxicological relevance. Each compound 

was supplied as analytical-grade standard by Sigma-Aldrich (USA). Methanol, 

acetonitrile, and ethanol used were HPLC grade, and ultrapure water was produced 

by a Milli-Q system of purification. 

 
Sample Collection and Preservation 
The 2 L wastewater samples were taken in pre-cleaned amber bottles at effluent and 

influent points. Stratified sampling method was adopted to account for diurnal 

variation, and grab samples were collected at morning peak (7–9 am), noon peak (12–

2 pm), and evening peak (6–8 pm) hours for three months' period. The samples were 

collected on ice at 4 °C and analysed within 24 hours to reduce degradation. 

 
Green Sample Preparation Techniques 

To minimize energy and solvent use, three green extraction methods were optimized 

and utilized: 
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Solid-Phase Microextraction (SPME): As a 100 µm polydimethylsiloxane (PDMS) fibber 

for semi-volatile and volatile analytes. Extraction with mild agitation at 45 °C. 

Dispersive Liquid-Liquid Microextraction (DLLME): Low-toxicity solvents (disperser 

ethanol and extractant ethyl acetate) were used for the extraction of semi-polar 

analytes. 

Microwave-Assisted Extraction (MAE): Suitable for solid wastewater residues, 500 W 

for 15 min to allow analyte release with small solvent usage. 

All methods were revalidated for recovery, reproducibility, and reduction of matrix 

effect, and the optimal protocol was adopted in all final analyses. 

Instrumental Analysis 

The extracts were examined by: 

Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS): for the 

quantification of target ECs using multiple reaction monitoring (MRM). Calibration 

curves (R² ≥ 0.995) were constructed over a range of 1–500 ng/L. 

Fourier Transform Infrared Spectroscopy (FTIR): used to identify functional groups 

and scan for potential transformation products. 

Limits of Detection (LOD) and Quantification (LOQ) were as per ICH guidelines. 

Data Processing and Machine Learning Workflow. Analytical results were pre-treated 

and scaled-normalized. Machine learning (ML) algorithms were used to classify 

pollutants, estimate level of concentration, and evaluate WWTP removal efficiencies: 

Principal Component Analysis (PCA): for dimensionally reducing and graphically 

displaying contaminant patterns. 

Random Forest (RF): for classifying and ranking variable importance. Support Vector 

Machines (SVM): for predictive modelling of pollutant concentrations. 

Model training and validation employed 70:30 splitting and five-fold cross-validation 

to avoid overfitting. Accuracy, precision, recall, R², and RMSE were the performance 

metrics. 

 

Quality Control and Validation 

Procedural blanks and spiked recovery samples were added to each batch. 

Replicates (n = 3) were carried out to establish reproducibility. 

Recovery was 85–110%, which satisfied acceptable analytical performance standards. 

Inter-method comparison with classical liquid-liquid extraction (LLE) was performed 

to contrast green methods to benchmarks. 

Ethical and Environmental Considerations 

Solvent and sample volumes were kept to a minimum in accordance with Green 

Analytical Chemistry (GAC) guidelines. All waste solvents were pooled for disposal in 

accordance with Lagos State Environmental Protection Agency (LASEPA) policy. 

Occurrence of Emerging Contaminants in Lagos Wastewater 
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Table 1 presents the average concentration of the chosen emerging contaminants 

(ECs) in influent and effluent. 

Table 1. Concentration of selected ECs in influent and effluent wastewater samples 

(ng/L). Acetaminophen was the most prevalent drug, but with efficient removal 

(82.9%), in agreement with documented biodegradability in activated sludge systems. 

Triclosan had moderate removal (63.8%), as would be expected for partial 

biodegradation and adsorption on sludge. 

Bisphenol A (BPA) remained, with removal efficiency below 40%, of concern because 

it is endocrine active. Carbamazepine had low removal (5.9%), solidifying its position 

as a persistent marker of wastewater pollution. These results are in line with world 

tendencies, where acetaminophen is efficiently biodegraded but carbamazepine 

somehow always evades biodegradation (Paíga et al., 2019; Zhang et al., 2008) 

Compound Influent 

(Mean ± SD) 

Effluent 

(Mean ± SD) 

Removal 

Efficiency (%) 

Reported Range in 

Literature (ng/L) 

Acetaminophen 2450 ± 320 420 ± 75 82.9 1200–5000 (Paíga et 

al., 2019) 

Triclosan 870 ± 140 315 ± 60 63.8 200–1200 

(Ramaswamy et al., 

2011) 

Bisphenol A 620 ± 95 410 ± 80 33.9 300–900 (Sun et al., 

2017) 

Carbamazepine 510 ± 88 480 ± 90 5.9 300–1500 (Zhang et 

al., 2008) 

Comparison of Optimized Green Extraction Methods 

 

Table 2 shows the performance of the three optimized green extraction methods. 

Recovery rate and solvent consumption for optimized green extraction methods. 

DLLME provided optimum recovery with minimum solvent consumption for semi-

polar compounds such as BPA and carbamazepine. 

SPME provided environmentally friendly extraction of volatile/semi-volatile 

compounds without consuming any solvent. 

MAE was appropriate for solid wastewater residues but needed a little more solvent.  

This confirms that green technologies have the potential to substitute conventional 

solvent-based liquid–liquid extraction with no loss of analytical correctness. 

Technique Target Compounds (Best 

Fit) 

Recovery 

(%) 

RSD 

(%) 

Solvent Use 

(mL/sample) 

SPME Acetaminophen, Triclosan 86–92 ≤8 0.0 (solvent-free) 

DLLME BPA, Carbamazepine 88–94 ≤6 1.5 

MAE All compounds (residues) 82–90 ≤10 5.0 
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Machine Learning-Based Contaminant Level Prediction 

Machine learning-based contaminant concentration and removal efficiency prediction 

models are shown in Table 3. 

PCA verified a clear discrimination among influent and effluent samples, evidence of 

the efficiency of treatment processes but also revealed residual compounds. Random 

Forest was superior to SVM, with 94.6% accuracy, recommending it for wastewater 

monitoring and treatment optimization. 

Variable importance analysis identified WWTP technology type (activated sludge vs. 

trickling filter) and pH as significant factors of EC removal efficiency. 

Model Accuracy 

(%) 

R² RMSE 

(ng/L) 

Key Insights 

PCA 

(unsupervised) 

– – – Showed clear clustering of influent vs. 

effluent samples; BPA & carbamazepine 

grouped as persistent contaminants 

Random Forest 94.6 0.91 52 Best at feature importance ranking 

(identified treatment type & pH as 

strongest predictors of EC removal) 

SVM 91.2 0.87 64 Robust for prediction of triclosan and 

acetaminophen concentrations 
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Figure 3: Variable importance analysis 

 

Environmental Impacts: Effective removal of acetaminophen shows that existing 

treatment is effective for readily biodegradable drugs. Residual carbamazepine and 

partial BPA removal are concerns for aquatic organisms in Lagos lagoons receiving 

effluent discharge. Green sample preparation minimizes environmental footprint, 

consistent with SDG 6 (Clean Water and Sanitation) and SDG 12 (Responsible 

Consumption and Production). The ML model offers a predictive monitoring system, 

which has the potential to enable real-time management of wastewater in Lagos and 

other fast-growing African cities. 

 

Discussion  

The findings of this study highlight the pressing concern of emerging contaminants 

(ECs) in urban wastewater systems, especially within developing cities such as Lagos, 

Nigeria. The detected levels of acetaminophen, triclosan, bisphenol A, and 

carbamazepine in both influent and effluent samples indicate continuous introduction 

of pharmaceuticals and personal care products into the wastewater stream. Despite 

treatment processes, residual concentrations remained significant, with 

carbamazepine showing particularly poor removal efficiency (<10%), consistent with 

prior reports that describe it as one of the most persistent ECs in wastewater 

treatment (Verlicchi et al., 2012). Triclosan and bisphenol A removal efficiencies were 

moderate, but their effluent concentrations still exceeded ecotoxicological 

thresholds, suggesting potential risks for aquatic ecosystems and human health 

through water reuse and environmental discharge. 
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The integration of green analytical chemistry (GAC) methods, such as SPME, DLLME, 

and MAE, offered improved sustainability in sample preparation by reducing solvent 

consumption, lowering energy requirements, and maintaining analytical sensitivity. 

This aligns with current trends advocating greener approaches to chemical analysis 

(Anastas & Eghbali, 2010). Importantly, the methods provided comparable or even 

superior performance relative to traditional extraction techniques, reinforcing their 

suitability for adoption in resource-constrained regions. 

Machine learning (ML) models significantly enhanced the interpretative capacity of 

the study. Random Forest achieved the highest classification accuracy (94%), followed 

closely by SVM (92%) and PCA-supported clustering (91%). These results demonstrate 

the potential of ML to complement chemical analysis by identifying contaminant 

patterns, predicting treatment performance, and enabling proactive wastewater 

monitoring. Such data-driven insights are critical for advancing smart urban water 

management and contribute directly to SDG 6 (clean water and sanitation). 

 

Conclusion 

This study demonstrated that integrating green analytical chemistry techniques with 

advanced machine learning analytics provides an efficient, sustainable, and cost-

effective approach for monitoring emerging contaminants in urban wastewater. The 

methods effectively reduced environmental footprint while maintaining analytical 

robustness. Findings revealed that while some contaminants were moderately 

removed during wastewater treatment, others persisted at concerning levels, 

underscoring the need for upgraded treatment technologies. ML-driven classification 

and prediction further enhanced the understanding of contaminant behaviour, 

thereby enabling smarter decision-making in wastewater management. Overall, this 

research presents a replicable framework for other developing urban contexts where 

financial and infrastructural limitations hinder large-scale environmental monitoring. 

 
Recommendations 

1. Policy and Regulation: Policymakers should incorporate EC monitoring into 

national water quality guidelines and enforce stricter discharge limits for 

pharmaceuticals and personal care products. 

2. Technology Upgrades: Wastewater treatment plants should adopt advanced 

treatment processes such as ozonation, activated carbon adsorption, or 

membrane bioreactors to improve EC removal efficiencies. 

3. Adoption of Green Analytical Methods: Laboratories in developing countries 

should transition to GAC-based methods to reduce costs, minimize 

environmental impact, and improve detection sensitivity. 

4. Integration of Machine Learning: ML algorithms should be integrated into 

routine monitoring programs to enable predictive modelling of contaminant 

loads and early warning systems. 



 

 
AUGUST, 2025 EDITIONS. INTERNATIONAL JOURNAL OF: 

 

  TIJBEES 
180 

BUILT ENVIRONMENT & EARTH SCIENCE VOL. 9 

E-ISSN 3027-1606 
P-ISSN 3027-0049 

5. Public Awareness and Pharmaceutical Stewardship: Community-level 

campaigns should encourage proper disposal of pharmaceuticals and reduce 

direct entry of contaminants into wastewater systems. 
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