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ABSTRACT
The increasing
occurrence of new
contaminants (ECs)
like
pharmaceuticals,
endocrine-
disrupting
chemicals (EDCs),
personal care
products, and
microplastics in
urban wastewater
treatment  plants
has raised
gargantuan
environmental and
public health

concerns,

especially in fast-
growing
cities like Nigeria.
Conventional

urban

analytical tools,
although efficient,
have the risk of
employing  toxic
reagents, handling
big samples, and
demanding energy-
hungry equipment.
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Introduction

ggressive urbanization continues to be a challenge
to water infrastructure, especially for megacities
Olabode, et al (2024) Lagos, whose
wastewater Tajudeen, K. A. (2024) tends to bear a complex
(ECs), i.e,
pharmaceuticals, endocrine disruptors, personal care

such as

group of emerging contaminants
products, and microplastics Nurmin Bolong, et al (2009).
Such contaminants can live through usual treatment plants

and exert increasing threats to public health and aquatic
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Therefore, this research pursues a green analytical chemistry (GAC) approach to
design and validate low-cost, sensitive, and green methods for tracking ECs in
wastewater in urban settings. A MultiTech Nique strategy was employed that
combined solid-phase microextraction (SPME), dispersive liquid-liquid
microextraction (DLLME), and microwave-assisted extraction (MAE) with high-
end detection platforms like liquid chromatography-tandem mass spectrometry
(LC-MS/MS) and Fourier-transform infrared spectroscopy (FTIR). These green
chemistry and analytical sample preparation methods were developed to reduce
energy requirements and solvent consumption and increase extraction efficiency
and reproducibility. These selected ECs, i.e., acetaminophen, triclosan, bisphenol
A, and carbamazepine, were screened in influent and effluent wastewater samples
from three Lagos municipal wastewater treatment works, Nigeria. For the
improvement of analytical performance and interpretation of results, PCA ML
algorithms, RF, and SVM were incorporated into the workflow for contaminant
classification prediction, pattern identification, and estimation of removal
efficiency in treatment plants. The models were over 9o% precise for contaminant
classification and had good predictive capability for EC concentration. Findings
indicated the extensive use of ECs in influent and treated wastewater, where some
compounds surpassed ecotoxicological safety levels. Green analysis methods
demonstrated similar or better detection capability than the traditional methods
and met GAC requirements. In addition, ML-enhanced data analytics engaged
more insight into contaminant behaviour and supported real-time decision-making
to control water quality. This study highlights the potential for combining green
chemistry concepts with smart data analytics in designing sustainable monitoring
systems for low-cost ECs for urban wastewater. The study presents an applicable
solution for developing countries to promote environmental monitoring, minimize
ecological hazard, and support international initiatives toward UN Sustainable
Development Goals (SDGs) 6 and 12.

Keywords: Emerging Contaminants, Urban Wastewater, Sustainable Monitoring,
Solid-Phase  Microextraction, Dispersive Liquid, Liquid Microextraction,
Microwave-Assisted Extraction, Spectroscopy

ecosystems Xingyu Li, et al (2024. Conventional analytical procedures even though
efficient rely on dangerous solvents, consume lots of energy, and need long sample
preparation, which makes them less suitable for cheap and sustainable monitoring.
Green analytical chemistry (GAC) presents an opportunity for environmental footprint
reduction through the adoption of solvent-free saving, energy-efficient, and
reproducible methods. Anil Kumar Meher, et al (2025) SPME and the like are the
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quintessential realizations of GAC at work, facilitating high-sensitivity, reproducible
solvent-free extraction hands down the hip, green alternative to conventional liquid-
phase approaches. While this is happening, DLLME has been increasingly popular
because it requires minimal solvent, achieves rapid equilibration, and provides
excellent analyte recovery particularly for the analysis of drugs in water matrices.
Martins,et al (2025) Such protocols can be directly interfaced with advanced analytical
systems such as LC-MS/MS and FTIR for accurate identification and determination.
Outside the lab bench, machine learning (ML) is becoming a main propelling force for
the interpretation of complex environmental data. Although its complete potential in
ECs of Nigerian wastewater is in its early stages, the utility Sanja Cojbasi, et al (2022),0f
ML in more general water quality forecasting and analysis is already well documented.
Omeka et al., for example, monitored ML water quality observation trends in Nigeria
(2003-2024) and found an essential gap and the necessity for more advanced, hybrid
models.

Concurrently, Hassan (2025) showed the capability of ML in municipal wastewater
treatment, wherein models were utilized to forecast effluent quality under dynamic
organic loadings with superior compliance performance

RSC Publishing

Moving from a local standpoint, Taiwo et al. (2025) suggested an integrated water
management system in Lagos comprising loT-based sensor integration, remote
monitoring, and ML-based decision-making to tackle urban pollution sustainably
Okechi Favour, et al (2023) Collectively, these advances in methodology facilitate a
new, multi-analytical green method suited to Lagos's wastewater scenario coupling
SPME, DLLME, and possibly MAE with LC-MS/MS and FTIR detection, supported by ML
modules (e.g., PCA, RF, SVM) for contaminant identification, pattern recognition, and
concentration estimation. This method not only ensures proper detection at negligible
environmental expense but also supports responsive data-based management
interventions aligned with SDGs 6 (Clean Water & Sanitation) and 12 (Responsible
Consumption & Production).

Problem Statement

Rapidly expanding urban cities like Lagos, Nigeria, are facing mounting challenges
from the presence of emerging contaminants (ECs) like pharmaceuticals, personal
care products, endocrine-disrupting chemicals, and microplastics. These ECs are not
adequately removed by standard treatment processes and remain in effluents with
potential aquatic ecosystem, biodiversity, and human health concerns via

bioaccumulation and water reuse. Conventional monitoring techniques, though
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precise, are highly reliant on toxic solvents, power-consuming apparatus, and labour-
intensive procedures, making them costly and difficult to implement in low-resource
contexts.

Furthermore, there are no data-based and analytical monitoring plans in Nigeria that
are integrated, where ECs research is lacking despite increased urbanization and
industrial effluent. Existing surveillance practices give limited data with regard to the
fate of contaminants, treatment effectiveness, and long-term environmental
consequence. This generates an urgent requirement for inexpensive, green, and
smart surveillance systems integrating Green Analytical Chemistry (GAC) methods
with Machine Learning (ML) analysis. It would not only enhance contaminant
identification but also enable decision-making on wastewater management to meet

the UN Sustainable Development Goals (SDGs) 6 and 12.

Research Questions

e What are the nature and concentration of emerging contaminants in influent
and effluent samples of selected municipal wastewater treatment plants in
Lagos?

e How efficient are green analytical chemistry-based extraction methods
(SPME, DLLME, and MAE) in the detection and quantitation of ECs with
respect to traditional approaches?

e Do machine learning models (PCA, RF, SVM) enhance classification, prediction,
and interpretation of EC levels in wastewater samples?

e Towhatdegree do the integrated green analytical and ML-facilitated methods
reflect a sustainable and scalable system for urban wastewater management

in Nigeria?

Objectives of the Study

e To establish and assess a sustainable monitoring system for impending
pollutants in Lagos wastewater through the integration of green analytical
chemistry methodology with machine learning data analytics.

e To detect and quantify target emerging contaminants (e.g., triclosan,
acetaminophen, bisphenol A, and carbamazepine) in influent and effluent
wastewater samples at Lagos municipal treatment plants.

e Optimization and validation of green analytical chemistry methods (SPME,
DLLME, and MAE) for extraction and determination of ECs to minimize the use

of solvent, cost of energy and analysis.

TIIBEES E-ISSN 3027-1606
P-ISSN 3027-0049




AUGUST, 2025 EDITIONS. INTERNATIONAL JOURNAL OF:
BUILT ENVIRONMENT & EARTH SCIENCE VOL. 9

e To utilize high-resolution analytical equipment (LC-MS/MS and FTIR) to
identify chemical fingerprints of known pollutants and monitor treatment
efficacy.

e To integrate machine learning techniques (PCA, random forest, and support
vector machines) to detect pollutants, predict concentrations, and recovery
efficiency.

e To compare the sensitivity, reproducibility, cost-effectiveness, and
sustainability of the integrated green chemistry-ML system with traditional
monitoring strategies.

e For the purpose of offering policy recommendation on wastewater
monitoring in Nigeria, including the adoption of sustainable and smart
strategies that are synchronized with international environmental protection

and SDG goals.

Review of related literature

The occurrence of emerging pollutants (EPs) like pharmaceuticals, endocrine-
disrupting chemicals (EDCs), personal care products, and microplastics Kingsley O
Iwuozor, et al (2025) in urban wastewater has been reported more and more in recent
years. Their persistence and their ability to interfere with ecological and human health
systems have raised concern worldwide (Pal et al., 2014). Conventional wastewater
treatment plants are not equipped to completely remove these pollutants, and hence

they are continually released into aquatic systems (Tran et al., 2018).

Green Analytical Chemistry for Wastewater Analysis

Green Analytical Chemistry (GAC) seeks to minimize environmental imprints by
lowering the use of solvents, energy requirements, and toxic waste production during
chemical analysis (Anastas & Eghbali, 2010). Methods like solid-phase microextraction
(SPME), dispersive liquid-liquid microextraction (DLLME), and microwave-assisted
extraction (MAE) have gained considerable prominence as efficient alternatives to
classical extraction methods, allowing sensitive determination of ECs with smaller
environmental footprints (Rezaee et al., 2006; Rostagno & Prado, 2013). Sample
preparation protocols are being coupled with high-end detection platforms like LC-
MS/MS and FTIR for reasonable quantification (Ferrer & Thurman, 2012).
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Figure 1: Analytical Chemistry for Wastewater Analysis.

Why green strategies are imperative in urban wastewater analysis

Urban wastewater is a key pathway for pharmaceuticals, personal-care items,
endocrine disruptors, and other emerging pollutants (ECs). Traditional monitoring
pipes frequently solvent-hungry, energy-inefficient, and waste-generating are finding
it difficult to keep up with increased analytical demand from dense cities. Green
Analytical Chemistry provides a platform to reduce toxicity, solvent levels, energy
consumption, and waste without sacrificing quality data (Gatuszka et al., 2012;
Psillakis, 2022).

Principles and measures operationalizing "green"

GAC's 12 principles have been operationalized into empirically usable measures of
greenness. The Analytical Eco-Scale gives a penalty-point system for reagents,
hazards, and energy; GAPI scores greenness throughout the workflow; AGREE gives
one 0-1 value based on the 12 principles; and AGREEprep emphasizes especially
sample-preparation steps (Gatuszka et al., 2012; Ptotka-Wasylka, 2018; Pena-Pereira et
al., 2020; Wojnowski et al., 2022). These quantifications are employed increasingly to
compare increasingly sustainable wastewater methods and contrast options in
method development.

Greener sample-preparation techniques for ECs
Solvent-reducing, miniaturized extraction procedures form the core of GAC.
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Solid-phase microextraction (SPME) prevents bulk organic solvents and combines
sampling, extraction, and preconcentration; it is an effective platform for aqueous
matrices and trace organics (Arthur & Pawliszyn, 1990; Vas & Vékey, 2004). Dispersive
liquid-liquid microextraction (DLLME) is fast enrichment with microliter-scale
solvents and is nowadays a workhorse for ECs of polar-to-moderately nonpolar
character in water (Rezaee et al., 2006).

Microwave-assisted extraction (MAE) shortens extraction time and solvent quantities,
with enhanced recovery from solids/sludges helpful for analysis of sorbed ECs in
primary/secondary sludge streams (Onuska & Karasek, 1989; Lépez-Avilés et al., 2015).
Greener solvent systems (deep eutectic solvents, for instance) and miniaturized
devices increasingly reduce hazard profiles and waste through DLLME/SPME
procedures in accordance with AGREEprep guidance (Wojnowski et al., 2022).

Less o
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Prevention 8 Economy :yl;::.lnical hz:?:a[
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Figure 2. The 12 principles of Green Analytical Chemistry (GAC)

Chromatographic spectrometric platforms of reduced footprint
Analytically, UHPLC/LC-MS/MS is still the multi-class EC workhorse; miniaturization to
shorter columns, sub-2 pm particles, and microflow rates reduces solvent usage per
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analysis significantly with minimal loss of sensitivity (Gatuszka et al., 2012). Add-on "no-
solvent” or low-solvent detectors like FTIR and handheld spectroscopies offer quick
ranking and screening to exclude some samples, thus minimizing the overall resource
budget if used in tiered strategies (Pena-Pereira et al., 2020).

What is known about ECs in urban wastewater (global and African contexts)

World syntheses typically report that analgesics, antibiotics, antiepileptics, and
personal-care antimicrobials are frequently detected in influent and treated effluents
at concentrations from ng L™'—ug L™ (Verlicchi et al., 2012; Tran et al., 2018). African
setting studies also support the signatures of considerable usage and poor removal in
conventional treatment whereby low-cost greener monitoring protocols are suitable
for resource-constrained utilities like Ebele et al. (2017), Gumbo et al. (2024), and
Wilkinson et al. (2023).

Greenness assessment in validation of procedures

Best practice today combines fitness-for-purpose validation (sensitivity, selectivity,
ruggedness) with Eco-Scale, GAPI, AGREE, and AGREEprep scorecards to prove that
greener options are not compromising analytical performance. Double assessment
(performance + greenness scorecards) is now common in high-impact GAC treatments
of water (Ptotka-Wasylka, 2018; Pena-Pereira et al., 2020; Wojnowski et al., 2022).
Machine-learning and data-driven assistance to greener monitoring. Since greener
approaches tend to employ miniaturized prep and multiplexed detection, machine
learning (ML) is being applied increasingly to (i) classify impurities, (ii) estimate or
interpolate concentrations where data are sparse, and (iii) predict removal over
treatment trains. Reviews and case studies indicate that Random Forest, SVM, and
gradient boosting can supply accurate effluent quality or micropollutant removal
predictions that facilitate less frequent but more intelligent confirmatory analysis and
therefore reduced solvent/energy consumption (Haron et al., 2022; Yogarathinam et
al,, 2024; Wang et al., 2021; Huang et al., 2024).

Analytical Advances in EC Detection

The development of newer, solventless, and automation-friendly analysis methods
has further facilitated the detection of ECs in wastewater. LC-MS/MS is still the go-to
technique for trace-level quantitation, but there is evidence from recent publications
that environmentally friendly methods could equal performance with increased
sustainability (Herndndez et al., 2015). Such developments are particularly beneficial
for low-resource environments where expensive infrastructure is not readily available.

Machine Learning in Wastewater Analytics
The application of machine learning (ML) algorithms in environmental monitoring has
improved predictive modelling and data interpretation. PCA, RF, and SVM algorithms
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have been successfully used for contaminant classification, pattern recognition, and
performance evaluation of treatment systems (Cortes & Vapnik, 1995; Breiman, 2001;
Jolliffe & Cadima, 2016). Recent studies demonstrate that ML enhances knowledge of
contaminant behaviour and enables predictive assessments of removal effectiveness
in wastewater treatment plants (Wang et al., 2020).

Knowledge Gaps and Relevance to Urban Africa

While a majority of large-scale studies were done in Europe, Asia, and North America,
research on ECs in the cities of Africa, Nigeria in particular, remains limited.
Urbanization, poor wastewater infrastructure, and augmented pharmaceutical
consumption enhance EC discharge into aquatic environments (Ebele et al., 2017). This
information lacuna can be filled up through using green analytical and ML-based
methodologies that are capable of delivering low-cost, environmentally friendly, and
reproducible solutions for ECs monitoring in developing countries.

Methodology

Study Area

Field work was carried out in Lagos, Nigeria, one of the fastest-growing sub-Saharan
African cities with high population growth, intense industrialization, and growing use
of pharmaceutical and cosmetics products. Sewage influent and effluent were
sampled from three municipal WWTPs that have different treatment technologies and
urban catchments.

Target Contaminants and Reagents
The following emerging pollutants (ECs) were selected: acetaminophen, triclosan,

bisphenol A, and carbamazepine. The said above ECs were selected considering their
common occurrence in wastewater and ecotoxicological relevance. Each compound
was supplied as analytical-grade standard by Sigma-Aldrich (USA). Methanol,
acetonitrile, and ethanol used were HPLC grade, and ultrapure water was produced
by a Milli-Q system of purification.

Sample Collection and Preservation
The 2 L wastewater samples were taken in pre-cleaned amber bottles at effluent and

influent points. Stratified sampling method was adopted to account for diurnal
variation, and grab samples were collected at morning peak (7-9 am), noon peak (12—
2 pm), and evening peak (6-8 pm) hours for three months' period. The samples were
collected on ice at 4 °C and analysed within 24 hours to reduce degradation.

Green Sample Preparation Techniques
To minimize energy and solvent use, three green extraction methods were optimized

TIIBEES E-ISSN 3027-1606
P-ISSN 3027-0049

and utilized:




AUGUST, 2025 EDITIONS. INTERNATIONAL JOURNAL OF:
BUILT ENVIRONMENT & EARTH SCIENCE VOL. 9

Solid-Phase Microextraction (SPME): As a 100 um polydimethylsiloxane (PDMS) fibber
for semi-volatile and volatile analytes. Extraction with mild agitation at 45 °C.
Dispersive Liquid-Liquid Microextraction (DLLME): Low-toxicity solvents (disperser
ethanol and extractant ethyl acetate) were used for the extraction of semi-polar
analytes.

Microwave-Assisted Extraction (MAE): Suitable for solid wastewater residues, 500 W
for 15 min to allow analyte release with small solvent usage.

All methods were revalidated for recovery, reproducibility, and reduction of matrix
effect, and the optimal protocol was adopted in all final analyses.

Instrumental Analysis

The extracts were examined by:

Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS): for the
quantification of target ECs using multiple reaction monitoring (MRM). Calibration
curves (R? 2 0.995) were constructed over a range of 1-500 ng/L.

Fourier Transform Infrared Spectroscopy (FTIR): used to identify functional groups
and scan for potential transformation products.

Limits of Detection (LOD) and Quantification (LOQ) were as per ICH guidelines.

Data Processing and Machine Learning Workflow. Analytical results were pre-treated
and scaled-normalized. Machine learning (ML) algorithms were used to classify
pollutants, estimate level of concentration, and evaluate WWTP removal efficiencies:
Principal Component Analysis (PCA): for dimensionally reducing and graphically
displaying contaminant patterns.

Random Forest (RF): for classifying and ranking variable importance. Support Vector
Machines (SVM): for predictive modelling of pollutant concentrations.

Model training and validation employed 70:30 splitting and five-fold cross-validation
to avoid overfitting. Accuracy, precision, recall, R?, and RMSE were the performance
metrics.

Quality Control and Validation

Procedural blanks and spiked recovery samples were added to each batch.
Replicates (n = 3) were carried out to establish reproducibility.

Recovery was 85-110%, which satisfied acceptable analytical performance standards.
Inter-method comparison with classical liquid-liquid extraction (LLE) was performed
to contrast green methods to benchmarks.

Ethical and Environmental Considerations

Solvent and sample volumes were kept to a minimum in accordance with Green
Analytical Chemistry (GAC) guidelines. All waste solvents were pooled for disposal in
accordance with Lagos State Environmental Protection Agency (LASEPA) policy.
Occurrence of Emerging Contaminants in Lagos Wastewater
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Table 1 presents the average concentration of the chosen emerging contaminants
(ECs) in influent and effluent.

Table 1. Concentration of selected ECs in influent and effluent wastewater samples
(ng/L). Acetaminophen was the most prevalent drug, but with efficient removal
(82.9%), in agreement with documented biodegradability in activated sludge systems.
Triclosan had moderate removal (63.8%), as would be expected for partial
biodegradation and adsorption on sludge.

Bisphenol A (BPA) remained, with removal efficiency below 40%, of concern because
it is endocrine active. Carbamazepine had low removal (5.9%), solidifying its position
as a persistent marker of wastewater pollution. These results are in line with world
tendencies, where acetaminophen is efficiently biodegraded but carbamazepine
somehow always evades biodegradation (Paiga et al., 2019; Zhang et al., 2008)

Compound Influent Effluent Removal Reported Range in
(Mean+SD) (MeanzxSD) Efficiency (%)  Literature (ng/L)

Acetaminophen 2450 * 320 420 £ 75 82.9 1200-5000 (Paiga et
al., 2019)

Triclosan 870 £ 140 315 + 60 63.8 200-1200
(Ramaswamy et al,
2011)

Bisphenol A 620 + 95 410 * 80 33.9 300-900 (Sun et al,
2017)

Carbamazepine 510+ 88 480 £ 90 5.9 300-1500 (Zhang et
al., 2008)

Comparison of Optimized Green Extraction Methods

Table 2 shows the performance of the three optimized green extraction methods.
Recovery rate and solvent consumption for optimized green extraction methods.
DLLME provided optimum recovery with minimum solvent consumption for semi-
polar compounds such as BPA and carbamazepine.

SPME provided environmentally friendly extraction of volatile/semi-volatile
compounds without consuming any solvent.

MAE was appropriate for solid wastewater residues but needed a little more solvent.
This confirms that green technologies have the potential to substitute conventional
solvent-based liquid-liquid extraction with no loss of analytical correctness.

Technique Target Compounds (Best Recovery RSD Solvent Use
Fit) (%) %) (mL/sample)

SPME Acetaminophen, Triclosan  86-92 <8 0.0 (solvent-free)

DLLME BPA, Carbamazepine 88-94 <6 1.5

MAE All compounds (residues)  82-90 <10 5.0
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Influent vs Effluent Concentrations of Emerging Contaminants
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Machine Learning-Based Contaminant Level Prediction

Machine learning-based contaminant concentration and removal efficiency prediction
models are shown in Table 3.

PCA verified a clear discrimination among influent and effluent samples, evidence of
the efficiency of treatment processes but also revealed residual compounds. Random
Forest was superior to SVM, with 94.6% accuracy, recommending it for wastewater
monitoring and treatment optimization.

Variable importance analysis identified WWTP technology type (activated sludge vs.
trickling filter) and pH as significant factors of EC removal efficiency.

Model Accuracy R? RMSE Key Insights
(%) (ng/L)
PCA = = = Showed clear clustering of influent vs.
(unsupervised) effluent samples; BPA & carbamazepine
grouped as persistent contaminants
Random Forest 94.6 0.91 52 Best at feature importance ranking

(identified treatment type & pH as
strongest predictors of EC removal)

SVM 91.2 0.87 64 Robust for prediction of triclosan and
acetaminophen concentrations
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Performance of Machine Learning Models for EC Classification
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Figure 3: Variable importance analysis

Environmental Impacts: Effective removal of acetaminophen shows that existing
treatment is effective for readily biodegradable drugs. Residual carbamazepine and
partial BPA removal are concerns for aquatic organisms in Lagos lagoons receiving
effluent discharge. Green sample preparation minimizes environmental footprint,
consistent with SDG 6 (Clean Water and Sanitation) and SDG 12 (Responsible
Consumption and Production). The ML model offers a predictive monitoring system,
which has the potential to enable real-time management of wastewater in Lagos and
other fast-growing African cities.

Discussion

The findings of this study highlight the pressing concern of emerging contaminants
(ECs) in urban wastewater systems, especially within developing cities such as Lagos,
Nigeria. The detected levels of acetaminophen, triclosan, bisphenol A, and
carbamazepine in both influent and effluent samples indicate continuous introduction
of pharmaceuticals and personal care products into the wastewater stream. Despite
treatment processes, residual concentrations remained significant, with
carbamazepine showing particularly poor removal efficiency (<10%), consistent with
prior reports that describe it as one of the most persistent ECs in wastewater
treatment (Verlicchi et al., 2012). Triclosan and bisphenol A removal efficiencies were
moderate, but their effluent concentrations still exceeded ecotoxicological
thresholds, suggesting potential risks for aquatic ecosystems and human health
through water reuse and environmental discharge.
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The integration of green analytical chemistry (GAC) methods, such as SPME, DLLME,
and MAE, offered improved sustainability in sample preparation by reducing solvent
consumption, lowering energy requirements, and maintaining analytical sensitivity.
This aligns with current trends advocating greener approaches to chemical analysis
(Anastas & Eghbali, 2010). Importantly, the methods provided comparable or even
superior performance relative to traditional extraction techniques, reinforcing their
suitability for adoption in resource-constrained regions.

Machine learning (ML) models significantly enhanced the interpretative capacity of
the study. Random Forest achieved the highest classification accuracy (94%), followed
closely by SVM (92%) and PCA-supported clustering (91%). These results demonstrate
the potential of ML to complement chemical analysis by identifying contaminant
patterns, predicting treatment performance, and enabling proactive wastewater
monitoring. Such data-driven insights are critical for advancing smart urban water
management and contribute directly to SDG 6 (clean water and sanitation).

Conclusion

This study demonstrated that integrating green analytical chemistry techniques with
advanced machine learning analytics provides an efficient, sustainable, and cost-
effective approach for monitoring emerging contaminants in urban wastewater. The
methods effectively reduced environmental footprint while maintaining analytical
robustness. Findings revealed that while some contaminants were moderately
removed during wastewater treatment, others persisted at concerning levels,
underscoring the need for upgraded treatment technologies. ML-driven classification
and prediction further enhanced the understanding of contaminant behaviour,
thereby enabling smarter decision-making in wastewater management. Overall, this
research presents a replicable framework for other developing urban contexts where
financial and infrastructural limitations hinder large-scale environmental monitoring.

Recommendations
1. Policy and Regulation: Policymakers should incorporate EC monitoring into

national water quality guidelines and enforce stricter discharge limits for
pharmaceuticals and personal care products.

2. Technology Upgrades: Wastewater treatment plants should adopt advanced
treatment processes such as ozonation, activated carbon adsorption, or
membrane bioreactors to improve EC removal efficiencies.

3. Adoption of Green Analytical Methods: Laboratories in developing countries
should transition to GAC-based methods to reduce costs, minimize
environmental impact, and improve detection sensitivity.

4. Integration of Machine Learning: ML algorithms should be integrated into
routine monitoring programs to enable predictive modelling of contaminant
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loads and early warning systems.
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5. Public Awareness and Pharmaceutical Stewardship: Community-level
campaigns should encourage proper disposal of pharmaceuticals and reduce
direct entry of contaminants into wastewater systems.
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