TIMBOU-AFRICA
PUBLICATION
INTERNATIONAL
JOURNAL AUGUST,
2025 EDITIONS.

INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH AND TECHNOLOGY

VOL. 9 NO. 5 E-ISSN 3027-1770 P-ISSN 3026-8095

ODELING OILFIELD DEMULSIFICATION PROPERTIES OF Annona Muricata SEED OIL DERIVED EXTRACTS

ABSTRACT

In this study, oilfield demulsification properties of soursop seed oil extracts were investigated. The study utilized previously obtained data from experimental study of the demulsification properties of the tropical soursop fruit containing points data various variables. including acid number, density, saponification value, specific density, hydrpohyliclipophylic balance (HLB), dielectric constant, pH and viscosity. The modeling process involved an initial

¹OSESA, OLADIMEJI CELESTINE; ²DURU REMY U., ¹AJIENKA, JOSEPH A., ¹OSOKOGWU UCHE; & ¹APPAH DULU

¹Department of Petroleum and Gas Engineering, University of Port Harcourt. ²Department of Pure and Industrial Chemistry, University of Port Harcourt

Corresponding Author: oladimejic@yahoo.com

DOI: https://doi.org/10.70382/tijert.vo9i5.008

Introduction

ne of the significant problems facing petroleum industries is the resolution of water in oil emulsions (Zhai et al., 2020). A regular oilfield emulsion is a dispersion of water droplets in oil. Emulsions are generally not desirable in the petroleum industry for a number of reasons. The presence of waterin-oil increases operation costs in the form of demulsification expenses and increased pumping or heating costs (Raynel et al., 2021). Oilfield emulsions, if not tackled, can lead to numerous production issues like corrosion damage and distortion of normal downstream operations in refineries, while reducing the quality index of crude oil samples. To avoid formation of unwanted emulsions, the acceptable water content of crude oil samples is usually less than 0.5% (Abdulredha et al., 2022). Demulsification is the breakdown of emulsion into its incompatible individual phases, particularly water and oil (Saad et al., 2020). This is a very important process in petroleum industries, where emulsions occur almost always either naturally or consciously made by man. Several methods currently available for demulsification of

TIJERT

effort of asertaining the correlations of the variables with the dependent variables. This was done to be able to determine which independent variables have enough correlation to be included in the final equations for both dielectric constant and hydrpohylic-lipophylic balance (HLB). From the correlations, it was found that a quadratic curve gave the best fit for the relationship between the dependent and independent variables. From the final equations, it was found that dielectric constant was a function of saponification value, hydrpohylic-lipophylic balance and viscosity; while hydrpohylic-lipophylic balance was found to be dependent on dielectric constant, saponification value and viscosity. Considering the nature of the developed models, it can be seen that although both density and specific density were part of the model building process, their coefficients in the final models were found to be zero.

Keywords: soursop seed oil, oilfield chemicals, demulsifier, green chemistry, mathematical model

crude oil include chemical, electrical, thermal, mechanical methods or their combinations. Chemical demulsification is one of the most widely applied in the petroleum industries because of the ease of application of the chemicals, low cost as well as minimal heat and settling time requirements (Efeovbokha *et al*, 2017). The mechanism of demulsification involves the surface-active compound moves to an oilwater interface and breaks the attractive bonds, which cause the water droplets to coalesce (Admawi & Mohammed, 2023).

Chemical demulsification involves the use of chemicals known as demulsifiers to reduce the stability of the emulsions and assist in its coalescence and eventual separation (Raya *et al.*, 2020). Crude oils vary considerably in emulsifying tendencies (Duru *et al.*, 2016). Some form very stable emulsions that are difficult to separate. Others do not emulsify or form loose emulsions that separate quickly. Hence the demulsifiers need to be properly formulated in order to meet the requirement needed in breaking the emulsion with little agitation (Adeyanju & Oyekunle, 2018). Demulsifier formulations involve a combination of two to four different but compatible chemicals, in carrier solvent(s) such as isopropanol, methanol, xylene or diesel.

In the oil and gas industry, there is a substantial need to further investigate and optimize the effect of emulsions in crude oil on the flow rate and pressure of fluid flow in pipeline using chemical (demulsifiers) injection (Saad *et al.*, 2020). A large number of tests have been performed in the field by injecting various dosages of demulsifier and the results of these tests show varying percentages of increase in flow-rate and pressure. This scenario requires modeling of existing demulsification process to

ascertain optimal operating conditions. In this study, the demulsification properties of green seed oil extracts derived from the tropical soursop fruit will be modeled.

Materials and Methods

Previously obtained data from experimental study of the demulsification properties of the tropical soursop fruit were utilized for this study. The experimental data contained various data points on various variables, including acid number, density, saponification value, specific density, hydrpohylic-lipophylic balance (HLB), dielectric constant, pH and viscosity. Here, the dependent variables were chosen to be dielectric constant and hydrpohylic-lipophylic balance (HLB).

The modeling process involved an initial effort of asertaining the correlations of the variables with the dependent variables (Ojinnaka et al., 2016). This was done to be able to determine which independent variables have enough correlation to be included in the final equations for both dielectric constant and hydrpohylic-lipophylic balance (HLB).

The final equations were obtained as follows:

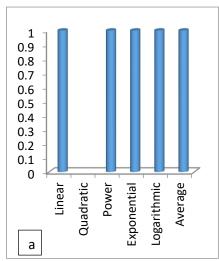
$$D = 0.05194X_1 + 47.895X_2 - 2.76232X_3 - 908.443 \tag{1}$$

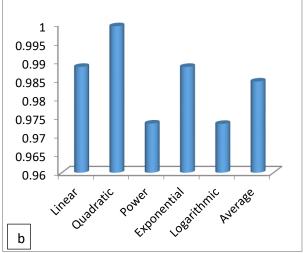
Where D= dielectric constant (-), $X_1=$ saponification value (mgKOH/gOil), $X_2=$ HLB (1-S/A) and $X_3=$ viscosity (mPaS)

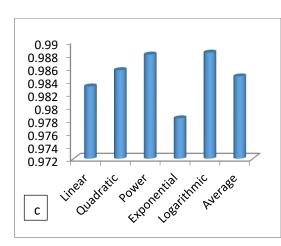
$$H = 0.020879X_1 + 0.05767X_2 - 0.00108X_3 + 18.967$$
 (2)

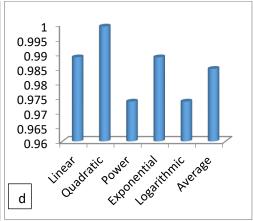
Where H = hydrpohylic-lipophylic balance (1-S/A), $X_1 = \text{dielectric constant (-)}$, $X_2 = \text{viscosity (mPaS)}$ and $X_3 = \text{saponification value (mgKOH/gOil)}$

Considering the nature of the developed models, it can be seen that although both density and specific density were part of the model building process, their coefficients in the final models were found to be zero. Hence, it can further be asserted that both hydrophylic-lipophylic balance and dielectric constant are not dependent on either density or specific density. Therefore, any previously reported associations between the variables from the curve fitting process can best be described as superficial.

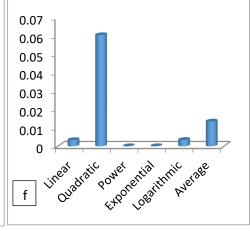

Results and Discussion


Figure 1 shows the coefficients of determination (R²) for various mathematical models between dielectric constant and other parameters for demulsification. Again, it can be deduced that quadratic model consistently gave the highest coefficient of determination among the models apart from acid number in which all reported coefficients had values of 1. The coefficient of determination between dielectric constant and acid number can consequently be described as undefined, given the fact





that no quadratic curve could be fit to their relationship. For the other parameters, their average coefficients were found to be all above the threshold value of 0.800, except for pH, which gave a very low average coefficient value of 0.013.



TIJERT

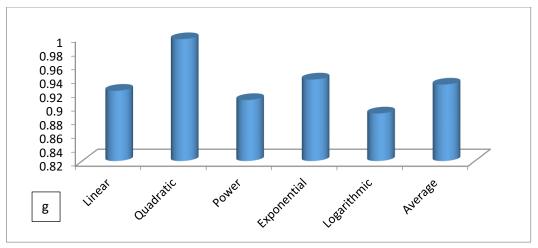
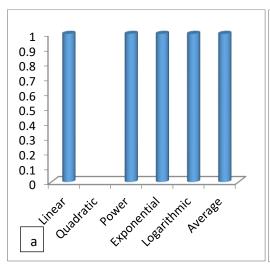
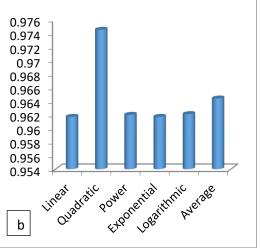
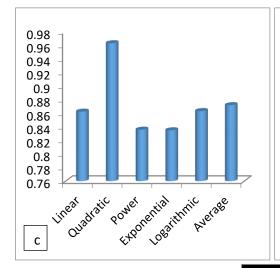
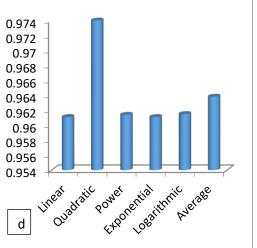
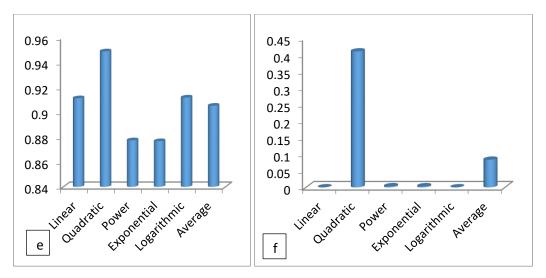






Figure 1 Demulsification coefficients of determination (R^2) for various mathematical models between dielectric constant and (a) acid number (b) density (c) saponification (d) specific gravity (e) HLB (f) pH (g) viscosity



TIJERT

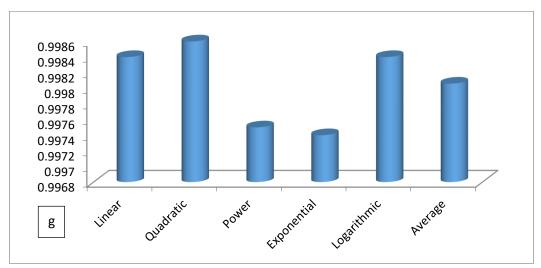


Figure 2 Demulsification coefficients of determination (R^2) for various mathematical models between HLB and (a) acid number (b) density (c) saponification (d) specific gravity (e) dielectric constant (f) pH (g) viscosity

This suggests a reasonably high correlation between dielectric constant and other parameters like density, saponification, specific gravity, HLB, and viscosity for demulsification. However, for demulsification, there exists no correlation between dielectric constant and pH. Subsequently, acid number and pH parameters were not included in the modelling process.

Figure 2 shows the coefficients of determination (R²) for various mathematical models between HLB and other parameters for demulsification. Again, it can be deduced that quadratic model consistently gave the highest coefficient of determination among the models apart from acid number in which all reported coefficients had values of 1. The coefficient of determination between HLB and acid number can consequently be described as undefined, given the fact that no quadratic curve could be fit to their

relationship. For the other parameters, their average coefficients were found to be all above the threshold value of 0.800, except for pH, which gave a very low average coefficient value of 0.013.

This suggests a reasonably high correlation between HLB and other parameters like density, saponification, specific gravity, dielectric constant, and viscosity for demulsification. However, for demulsification, there exists no correlation between HLB and pH. Subsequently, acid number and pH parameters were equally not included in the modelling process.

The developed models were later validated using experimental data as captured in Figures 3 and 4 for dielectric constant and hydrophylic-lipophylic balance respectively. From the charts, it can be seen that the developed models clearly simulated the experimental data very well, with all the data points found on the linear curve of best fit. This underscores the accuracy of the regressional models developed for both dielectric constant and hydrophylic-lipophylic balance of the new green demulsifiers.

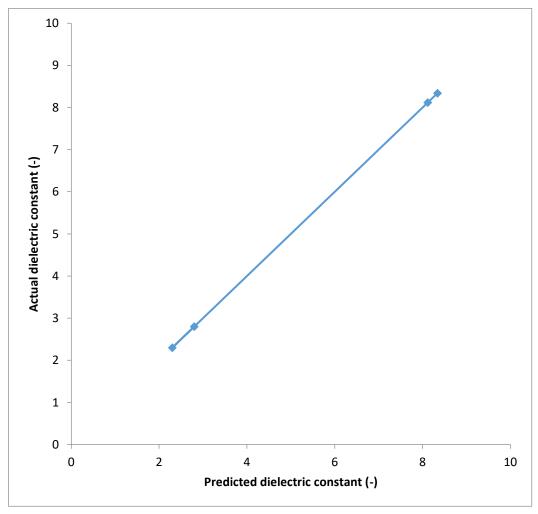


Figure 3 Validation of developed dielectric constant model

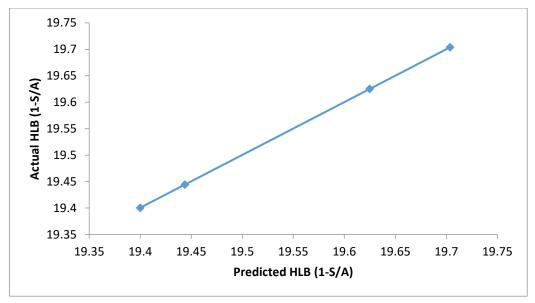


Figure 4 Validation of developed hydrophylic-lipophylic balance model

Conclusion

The demulsification properties of soursop seed oil extracts were modeled in this study. The modeling process involved an initial effort of asertaining the correlations of the variables with the dependent variables. This was done to be able to determine which independent variables have enough correlation to be included in the final equations for both dielectric constant and hydrpophylic-lipophylic balance (HLB). From the correlations, it was found that aquadratic curve gave the best fit for the relationship between the dependent and independent variables.

From the final equations, it was found that dielectric constant was a function of saponification value, hydrophylic-lipophylic balance and viscosity; while hydrophylic-lipophylic balance was found to be dependent on dielectric constant, saponification value and viscosity. However, it was found that both density and specific density do not affect either the demulsifier dielectric constant or hydrophylic-lipophylic balance. Therefore, any previously reported associations between the variables from the curve fitting process can best be described as superficial.

References

Abdulredha, M. M., Aslina, H. S., & Luqman, C. A. (2020). Overview on petroleum emulsions, formation, influence and demulsification treatment techniques. *Arabian Journal of Chemistry*, 13(1), 3403-3428.

Abdulredha M.M., Hussain S.A, Abdullah, L.C., & Hong T.L. (2022). Water-in-oil emulsion stability and demulsification via surface-active compounds: A review. *Journal of Petroleum Science and Technology*, 209, 109848

Adeyanju, O. A., & Oyekunle, L. O. (2018). Optimum demulsifier formulations for Nigerian crude oil-water emulsions. Egyptian journal of petroleum, 27(4), 657-662.

Admawi, H. K., & Mohammed, A. A. (2023). A comprehensive review of emulsion liquid membrane for toxic contaminants removal: An overview on emulsion stability and extraction efficiency. *Journal of Environmental Chemical Engineering*, 11(3), 109936.

- Akpoturi, P & Ejelonu, O. C, (2021). Demulsifiers Selection Techniques For Optimum Oil Field Emulsion Resolution In Niger Delta Operations, International Journal of Innovative Mathematics, Statistics & Energy Policies, 9(3): 1-21, SEAHI PUBLICATIONS, www.seahipaj.org ISSN: 2467-852.
- Duru, R.U, Osuji, L.C, Abayeh, O.J, Ajienka, J.A, Ojinnaka, C.M., (2016). Correlations of Hydrophile-Lipophile Balance with properties affecting water-in-oil Emulsion stability of Nigerian crude oils, *International Journal of Scientific & Engineering Research*, Volume 7, Issue 11.
- Efeovbokhan, V. E., Udonne, J. D., Oladimeji, T. E., Nwokorobia, C., & Anawe, P. A. (2017). Formulation, Compounding and Assessment of De-Emulsifiers for the De-Emulsification of Nigerian Crude Oil Emulsion. *Petroleum & Coal*, 59(3).
- Kang, W., Yin, X., Yang, H., Zhao, Y., Huang, Z., Hou, X.,& Aidarova, S. (2018). Demulsification performance, behavior and mechanism of different demulsifiers on the light crude oil emulsions. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 545, 197-204.
- Liu, D., Li, C., Yang, F., Sun, G., You, J., & Cui, K. (2019). Synergetic effect of resins and asphaltenes on water/oil interfacial properties and emulsion stability. *Fuel*, 252, 581-588.
- Ojinnaka, C. M., Ajienka, J. A., Abayeh, O. J., Osuji, L. C., & Duru, R. U. (2016). Formulation of best-fit hydrophile/lipophile balance-dielectric permittivity demulsifiers for treatment of crude oil emulsions. Egyptian Journal of Petroleum, 25(4), 565-574.
- Rajamanickam, K. (2021). Technologies Involved in the Demulsification of Crude Oil. In Crude Oil-New Technologies and Recent Approaches. IntechOpen.
- Raya, S. A., Mohd Saaid, I., Abbas Ahmed, A., & Abubakar Umar, A. (2020). A critical review of development and demulsification mechanisms of crude oil emulsion in the petroleum industry. *Journal of Petroleum Exploration and Production Technology*, 10, 1711-1728.
- Raynel, G., Marques, D. S., Al-Khabaz, S., Al-Thabet, M., & Oshinowo, L. (2021). A new method to select demulsifiers and optimize dosage at wet crude oil separation facilities. Oil & Gas Science and Technology–Revue d'IFP Energies nouvelles, 76, 19.
- Roostaie, T., Farsi, M., Rahimpour, M. R., & Biniaz, P. (2017). Performance of biodegradable cellulose based agents for demulsification of crude oil: Dehydration capacity and rate. Separation and Purification Technology, 179, 291-296.
- Saad, M. A., Abdurahman, N. H., & Yunus, R. M. (2020). Eco-friendly surfactant to demulsification water in oil emulsion: synthesis, characterization and application. *Chemical Data Collections*, 30, 100582.
- Saad, M. A., Kamil, M., Abdurahman, N. H., Yunus, R. M., & Awad, O. I. (2019). An overview of recent advances in state-of-the-art techniques in the demulsification of crude oil emulsions. *Processes*, 7(7), 470.
- Zhai, M., Wu, M., Wang, C., & Li, X. (2020). A novel silica-supported polyether polysiloxane quaternary ammonium demulsifier for highly efficient fine-sized oil droplet removal of oil-in-water emulsions. RSC advances, 10(32), 18918-18926.

Appendix

Table 1 Properties of crude oil samples used for the demulsification study

Variable	16AU	219	343	445	MIX BLEND
Acid Number	9.34	12.3	9.21	9.13	9.42
API	22.3	7.5	22.4	17.4	17.8
Density	0.9034	0.9957	0.9029	0.9261	0.9938
Saponification	327.12	376.22	320.44	351.28	348.21
Specific Gravity	0.92	1.018	0.92	0.96	1.016
HLB	19.42896	19.346	19.425	19.48	194589
Dielectric constant	2.3	2.53	2.46	2.48	2.49
PH	6.7	6.6	6.6	6.4	6.2
Viscosity	22.3	21.9	21.6	34.4	33.2

Table 2 Properties of soursop seed oil extract derived demulsifiers

Variable	Demulsifier A		Demulsifier B	
Acid Number	6.732	5. 8905	2.5245	2.244
Density	0.8814	0.8821	0.8925	0.8932
Saponification	224.4	211.7775	134.64	151.47
Specific Gravity	0.9012	0.9019	0.9126	0.9133

Variable	Demulsifie	Demulsifier A		В
HLB	19.4	19.4437	19.625	19.7037
Dielectric constant	8.34	8.12	2.3	2.8
PH	5.7	8.6	7.2	6.7
Viscosity	8.7	9.3	13.1	14.6

Table 3 Demulsification coefficients of determination (R²) for various mathematical models between dielectric constant and other parameters

Parameter	Coefficient of Determination					Average
	Linear	Quadratic	Power	Exponential	Logarithmic	
Acid Number	1	-	1	1	1	1
Density	0.9884	0.9993	0.9732	0.9884	0.9731	0.98448
Saponification	0.9831	0.9856	0.988	0.9782	0.9883	0.98464
Specific Gravity	0.9887	0.9992	0.9736	0.9887	0.9736	0.98476
HLB	0.9112	0.9994	0.8774	0.9118	0.8767	0.9153
pН	0.0034	0.0605	0.00008	0.0001	0.0035	0.013516
Viscosity	0.922	0.9968	0.9085	0.9383	0.889	0.93092

Table 4 Demulsification coefficients of determination (R²) for various mathematical models between hydrophilic-lipophilic balance (HLB) and other parameters

Parameter	Coefficient	Coefficient of Determination					
	Linear	Quadratic	Power	Exponential	Logarithmic		
Acid Number	1	-	1	1	1	1	
Density	0.9617	0.9745	0.962	0.9617	0.9621	0.9644	
Saponification	0.8623	0.963	0.8358	0.8349	0.8632	0.87184	
Specific Gravity	0.9611	0.974	0.9614	0.9611	0.9615	0.96382	
Dielectric constant	0.9112	0.9489	0.8774	0.8767	0.9118	0.9052	
pH	0.00008	0.4102	0.0033	0.0032	0.00007	0.08337	
Viscosity	0.9984	0.9986	0.9975	0.9974	0.9984	0.99806	