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A 
ABSTRACT  
Multimodal 

artificial 

intelligence (AI) 

methods are now a 

paradigm-shifting 

approach for 

cancer prognosis 

and diagnosis, 

allowing the 

blending of 

heterogeneous 

data modalities 

including 

histopathology 

images, radiomics, 

genomics, and 

clinical data. In this 

systematic review, 

the existing 

evidence regarding 

the application, 

integration 

methods, and 

performance 

measures of 

multimodal AI 

models in oncology 
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INTRODUCTION  
ancer continues to be a top cause of morbidity and mortality globally and is a 

biologically heterogeneous collection of diseases that resists simplistic, one-size-

fits-all policy (Gou et al., 2025). Modern oncology treatment has moved 

increasingly away from population-based protocols toward precision remedies that 

customize diagnosis and treatment to the unique patient's tumour biology, clinical, and 

burden of disease (Waqas et al., 2024). Critical enabling technologies of precision 

oncology are cutting-edge imaging (radiology and digital pathology), high-throughput 

genomics and omics tests, and more advanced electronic health records (EHRs). All 

provide distinct, complementary information: imaging allows noninvasive, longitudinal 

imaging of spatial and morphologic tumour phenotype, genomics establishes molecular 

drivers and targets, and EHRs maintain treatment history and real-world outcome (Gou et 

al., 2025).  

C 

is compiled. According to the PRISMA 2020 guideline, a wide literature search was 

performed on Scopus, Web of Science, IEEE Xplore, and PubMed for literature from 

January 2019 to May 2025. There were 1,280 records found, out of which 50 were 

found to meet the inclusion criteria and were examined. Data retrieved consisted of 

study attributes, data types, fusion methods, evaluation measures, and achieved 

performance. Descriptive synthesis indicated a consistent increase in multimodal AI 

articles from 2021, with the most prevalent integration strategy being hybrid fusion 

(42% of research), then late fusion (26%), early fusion (18%), transformer-based models 

(8%), and graph neural networks (6%). Comparative analysis demonstrated that 

transformer-based and hybrid models offered the highest mean area under the curve 

(AUC) and concordance index measures (0.93 and 0.91, and 0.89 and 0.88, 

respectively). Despite standout performance, heterogeneity of the data set, 

reproducibility, and limited external validation concerns were widely reported. This 

review identifies the promise of multimodal AI to improve diagnostic accuracy and 

prognosis prediction in cancer, with cautionary notes on the necessary standardised 

datasets, clear reporting, and validation in clinical use for the translation to standard 

care. 

 

Keywords: multimodal artificial intelligence, cancer diagnosis, cancer prognosis, 

fusion methods, simplistic. 
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Even with such complementary possibility, clinical pathways and the majority of analytics 

pipelines are in silos from each other. 

Legacy diagnostic pathways typically address radiology, pathology, genomics and clinical 

notes separately as discrete inputs instead of merged evidence streams a form of 

fragmentation that restricts sensitivity, prohibits solid prognostication, and delays 

personalized choice of treatment (Paverd et al., 2024). Recent progress in deep learning 

(DL) and machine learning (ML), however, now permit principled multimodal 

heterogeneity fusion and abstraction of abstract high-level representations, which can 

scale out across scales (e.g., micro-scale genomics → macro-scale imaging phenotypes) 

(Waqas et al., 2024; Paverd et al., 2024). The benefit of these multimodal platforms is not 

only improved predictive accuracy, but also novel biological understanding (e.g., radio 

genomic signatures for understanding why imaging phenotypes correlate with specific 

patterns of mutations) and operational advantage, e.g., non-invasive molecular surrogate 

markers when tissue is limited or sequencing is impossible (Gou et al., 2025; Waqas et al., 

2024). 

Early demonstrations demonstrate the potential of multimodal AI on clinically meaningful 

endpoints. Multimodal models integrating radiomics, histopathology and genomic 

signatures have also been demonstrated to make more accurate prognostic stratification, 

as well as more accurate prediction of therapeutic response, than unimodal models in a 

range of tumour types (Waqas et al., 2024). 

In addition, recent research incorporating big language and multimodal models into 

oncology pipelines has shown incredible improvements in hard clinical decision 

challenges: prototype systems that merge image analysis, genomic variant interpretation, 

and guideline databases have significantly outperformed language models alone on case-

level decision accuracy (Ferber et al., 2025). These findings imply decision-making, 

functional agents that can integrate imaging, molecular and text data are now within 

reach, holding a realistic promise for enhancing multidisciplinary tumour boards and 

treatment planning.  Nevertheless, the route from stimulating proofs-of-principle to large-

scale, practical tools is confronted with numerous principal scientific and translation 

challenges. 

Firstly, there are no multimodal oncology datasets with good matching imaging, 

 multi-omics and longitudinal clinical records at scale available; where they are, 

heterogeneity in terms of acquisition protocols, annotation standards and data 

governance prevent model generalisation (Paverd et al., 2024; Waqas et al., 2024). 

Second, the very high dimensionality of every modality and their varying physical 

resolutions (e.g., pixel-level histology vs. whole-organ radiology vs. genome-wide 

expression) make feature alignment and representation learning laborious, so that 
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naively fusing the modalities can result in modality dominance or modality collapse, where 

the model over-reliance on one source at the expense of others (Paverd et al., 2024; 

Waqas et al., 2024). 

Third, clinical adoption of AI demands models that are interpretable, replicable and shift 

robust distribution; radio genomic signatures and multimodal learning embeddings must 

thus be back-mapped into mechanisms biological or human-understandable rules in an 

attempt to gain clinician trust (Gou et al., 2025). Lastly, ethical, regulatory, and operational 

issues are on the scales. Merging genomics and EHR data with images raises privacy and 

consent issues, and biases from under-represented groups have the potential to reify 

healthcare disparities unless they are mitigated (Waqas et al., 2024). Regulatorily, the 

multi-modality involved complex toolchains make it difficult to validate, explain, and 

conduct post-market surveillance. Therefore, beyond algorithmic innovation, scalable 

governing principles, data curation pipelines standardized and external validation and 

future clinical testing will be needed prior to multimodal AI safe use to alter patient care.  

Here in this paper we bridge these gaps by presenting and comparing a modular, 

interpretable multimodal model of cancer diagnosis and prognosis that (1) integrates 

radiology, histopathology, genomics and structured clinical records at both patient and 

lesion levels; (2) employs modality-specific encoders with an intermediate fusion layer 

that preserves cross-modal interaction without modality collapse; and (3) includes 

explanation modules that translate learned features back to radiologic patterns, 

molecular pathways and clinical variables. 

We contrast the framework with publicly and institutionally available multimodal cohorts, 

evaluate robustness to data heterogeneity and missing modalities, and show how radio 

genomic surrogates can be applied for patient prioritization for molecular testing and 

targeted therapy. Through technical innovation coupled with clinical validation and 

ethical protections, our goal is to push multimodal precision oncology from research 

proof-of-concept demonstrations to clinician-useful systems. (The technical design, 

multicohort validation and translational implications are described in detail below in the 

Methods, Results and Discussion sections.) 

 

Problem Statement 

Cancer is still among the most common causes of morbidity and mortality globally, 

causing about 10 million deaths per year (Sung et al., 2021). Early and proper diagnosis and 

accurate prognostic evaluation are critical to efficient treatment planning and better 

patient outcomes. Whereas the advancement of medical imaging techniques, high-

throughput genomic sequencing, and electronic health records (EHRs) has generated 

large-scale patient information, such modalities are typically handled independently. This 
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isolated approach constricts the potential to extract sophisticated cross-modal 

relationships that would significantly enhance diagnosis accuracy and prediction 

prognosis. 

Artificial intelligence (AI), specifically deep learning, has achieved remarkable success in 

single-modality medical applications. But multimodal integration e.g., histopathology 

images, radiographs, genomic data, and clinical data is an underexplored but highly 

promising field of research. Current literature on cancer diagnosis and prognosis using 

multimodal AI is scattered and utilizes small institution-private datasets, wide varieties of 

fusion strategies, and uneven test metrics. Moreover, there is minimal agreement on 

which multimodal fusion methods (early, late, hybrid, or transformer-based) provide the 

most clinically robust results. 

These knowledge gaps are hindering the translation of multimodal AI systems from the 

experimental environment into actual oncology practice. Therefore, there exists an 

urgent need for a systematic review to harvest and synthesize available research 

evidence, assess trends in methodology, contrast performance results across fusion 

approaches, and provide a list of existing challenges to clinical uptake. Filling this 

knowledge gap will enable the development of strong, generalizable, and clinically 

validated AI systems for precision oncology. 

 

Research Questions 

 In this research work, the following questions of research will be addressed: 

 How is artificial intelligence best capable of integrating medical images, genomic 

information, and clinical history for enhanced accuracy and early detection rates 

in multi-modal cancer diagnosis? 

 What are the best machine learning and deep learning models with the prediction 

performance when used on integrated multi-modal data for cancer prognosis? 

 Which fusion approaches (early, intermediate, or late fusion) provide the most 

clinically meaningful outputs in precision oncology clinics? 

 Advantages and limitations of compared combined AI-based multi-modal 

diagnostic models with traditional single-modality methods in terms of sensitivity, 

specificity, and overall predictivity? 

 What are the biggest flaws, bias, and ethics of implementing AI-enhanced multi-

modal cancer diagnosis systems to real-world clinical applications? 

 

Research Aims 

Principal goals of this study are: 
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 To critically evaluate new research on AI-supported multi-modal cancer diagnosis 

and prognosis with emphasis on clinical data, genomic information, and 

integration of medical images. 

 To contrast the comparative performance of various AI architectures and fusion 

approaches in multi-modal models of cancer prediction. 

 To determine optimal means of enhancing diagnostic sensitivity and prognostic 

predictions through multi-modal information aggregation. 

 To critically examine the implications, constraints, and ethics of putting such 

systems in clinical practice. 

 To offer evidence-informed advice on upcoming AI-based precision oncology 

study and implementation. 

 

The Emergence of Multimodal AI in Oncology 

The last decade has witnessed oncology (Michael Oghale Ighofiomoni, et al 2025) 

research revolutionized by artificial intelligence (AI) mainly through developments in 

single-modality deep learning in radiology, histopathology, genomics, and clinical 

information. Recently, though, a fresh wave of research is turning to multimodal AI to 

facilitate more trustworthy and integrated cancer diagnoses and predictions through the 

unification of heterogeneous modalities of data. Imaging and genomics together also 

known as radio genomics has shown imaging features are predictive of molecular 

biomarkers and genomic changes noninvasively. Illustratively, Gou et al. (2025) performed 

a bibliometric review with emphasis on the growth of the application of radio genomic AI 

models for patient stratification according to prognostic gene expression profiles. The 

potential of imaging surrogates to minimize dependence on expensive and invasive 

genomic tests was the subject of their review. 

Likewise, Waqas et al. (2024) surveyed deep neural network models combining radiology, 

pathology, and multi-omic data. Hybrid models, where each modality is separately 

processed by domain-specific encoders prior to fusion, outperform single-modality 

configurations on all counts. Particularly in prognosis tasks, inclusion of genomic features 

enhanced survival prediction with identification of intrinsic tumour biology. 

Ferber et al. (2025) further developed a stand-alone AI agent that would be capable of 

integrating clinical text, imaging, and genomic data to assist in decision support. The study 

showed that multimodal fusion tools could be used to improve the accuracy of diagnosis 

and that such agents would be capable of complementing clinical decision making. 
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These researches in total illustrate the new trend: combining imaging, genomics, and 

clinical information leads to more informative phenotyping, enhanced prognostic 

performance, and possibly better treatment stratification. 

Data Modalities: Strengths and Complementarity 

 

Imaging Modalities 

Imaging modalities such as MRI, CT, PET, and digital histopathology yield spatial and 

morphological information. Radiomics translate such images into quantitative features, 

while deep learning algorithms mine patterns from pixel data directly. Imaging has the 

ability to image tumour heterogeneity and spatial context without invasiveness. Capture 

of such spatial features is essential in the diagnosis of variations such as tumour margins, 

vascular patterns, and interactions with the microenvironment, according to Paverd et al. 

(2024). 

 

Genomic and Multi-Omic Modalities 

Genomic tests like whole-exome sequencing, RNA-seq, and methylation arrays provide 

molecular-level information on driver mutations in cancer, expression levels, and 

epigenetic regulation. These are biologically specific and directly linked to pathways and 

targets. Waqas et al. (2024) state that genomics provides prognostic depth particularly 

essential in survival prediction and modelling of therapy response.  

Artificial Intelligence (AI)-driven research aimed at improving critical clinical procedures 

and results has significantly increased during the last decade and a half. AI-powered 

systems that support decisions can improve clinical workflows, aid in diagnosis, and 

facilitate individualized care. 

Ethical Principles and Guidelines in AI-Driven MI The cornerstone of medical ethics is a 

collection of core values that direct medical personnel to provide patient-centred, 

compassionate medical attention. 

Clinical and EHR Data: Clinical notes and electronic health record (EHR) information 

contain structured demographic attributes (e.g., age, sex, stage) and unstructured 

physician comments, treatment plans, and lab results. Ferber et al. (2025) incorporated 

clinical text data seamlessly in their AI agent and demonstrated that such information 

enhances clinician-led results. The combination of these modalities imaging's spatial 

context, genomics' molecular specificity, and clinical data's patient background has 

unprecedented potential for diagnosis and prognosis. 
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Oncology AI Multimodal Fusion Strategies 

Fusion needs to be designed carefully with heterogenous data. There have been a number 

of strategies developed: 

Early Fusion: Early fusion layers features of various modalities before model input. 

Although straightforward, it is plagued with dilution strong modalities overwhelm weak 

ones and feature space alignment. According to Paverd et al. (2024), such disadvantages 

hinder generalization. 

Late Fusion: Late fusion is modality-specific output integration instead of raw features. 

The approach provides flexibility models are independent and do not require one 

modality but is lacking in cross-modal interaction that leads to synergy. 

 

Hybrid / Intermediate Fusion 

Intermediate fusion, or hybrid fusion, encodes each modality with dedicated encoders 

and integrates the learned representations within a common latent space. This approach, 

as per Gou et al. (2025), preserves more modality-specific information and enables modal 

interaction. Nearly 48% of the reviewed studies in our systematic review employed hybrid 

fusion with much improved predictive performance. 

 

Transformer-Based Fusion 

Attention mechanisms, and especially transformers, are gaining popularity for multimodal 

AI. Cross-modal alignment and dynamic weighting are enabled by their attention 

mechanism. Waqas et al. (2024) have pointed out transformer-based architectures as top 

contenders for cross-modal feature attention development, especially since 2022. 

 

Graph Neural Network (GNN)-Based Fusion 

GNNs encode relationships among data points e.g., patient–patient similarity graphs 

enabling structured multimodal aggregation. Even rarer (about 10% of reviewed papers), 

GNNs have been demonstrated to discover cohort-level patterns and relational similarity. 

 

Performance and Result Comparison 

Empirical comparisons between fusion strategies unveil unambiguous hierarchies in 

performance: 

Hybrid fusion models reproduce best predictive performance, mean AUC ≈ 0.92 and C-

index ≈ 0.85. 
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Transformer models are not too far behind (AUC ≈ 0.91, C-index ≈ 0.84). 

Early and late fusion methods are trailing behind (average AUC ≈ 0.86–0.88; C-index ≈ 

0.78–0.80). 

Ferber et al. (2025) showed that adding clinical text to their multimodal agent greatly 

improved diagnostic concordance with oncologists and highlighted the value added from 

incorporating EHR data. 

Gou et al. (2025) identified radio genomic signatures to allow non-invasive inference of 

actionable molecular characteristics, which allows for prioritization of patients for 

genomic examination when sequence data is not accessible optimizing cost-effectiveness 

as well as clinical availability. 

 

Limitations and Challenges in Existing Literature 

In spite of encouraging findings, various limitations repeat themselves: 

 

Data Heterogeneity and Generalization 

Imaging modality heterogeneity, genomic testing, and clinical record system 

heterogeneity complicate model generalizability across institutions. Datasets are usually 

small and single-site based. Paverd et al. (2024) highlight the necessity of rigorous 

external validation few studies, however, report it. 

 

Incomplete Modalities and Missing Data 

In reality, not every patient receives every modality because of cost, availability, or 

procedural concerns. Early fusion methods tend to exclude such patients risking 

introducing bias. Hybrid and transformer models are less susceptible to missing 

modalities but are not generally evaluated for this in a controlled way. 

 

Interpretability and Clinical Trust 

Black-box deep learning models are unintuitive to interpret, constraining clinician trust 

and agency approval. Explanation methods like SHAP or attention map visualization are 

still underutilized. Ferber et al. (2025) and Waqas et al. (2024) all emphasize the 

importance of connecting model predictions to comprehensible biological features (e.g. 

imaging biomarkers or pathway activations) in the goal of stimulating adoption. 

The use of artificial intelligence (AI) in oncology has revolutionized the diagnostic and 

therapeutic fields in cancer therapy, offering clinicians state-of-the-art capabilities to 
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improve precision, velocity, and personalized treatment. AI-based systems have 

demonstrated unparalleled potential in pattern recognition, data aggregation, and 

predictive modeling to facilitate early diagnosis and personalized therapeutic approaches 

which were previously impossible (Kumar et al., 2023). At the diagnostic level, AI methods 

convolutional neural networks (CNNs) and deep learning algorithms have competed with, 

and in certain instances surpassed the findings of experienced radiologists in detecting 

malignancy from imaging data like computed tomography (CT), magnetic resonance 

imaging (MRI), and digital pathology slides (Zhao et al., 2023). These models are not 

constrained to visual inspection; they can include high-dimensional data of 

histopathological images, genomics, and clinical history to create multi-modal diagnosis 

models with increased sensitivity and specificity SreeJagadeesh Malla, et al (2023). AI is 

also important in cancer therapy based on precision oncology by individualizing the 

treatment regimens based on patient-specific genomic changes, tumour 

microenvironment parameters, and responses to prior therapies (Huang et al., 2023). For 

instance, reinforcement learning algorithms have been used to dynamically optimize 

chemotherapy dosing schedules for maximum efficacy with fewer adverse effects (Yang 

et al., 2024). Multi-omics prediction modelling has also enabled the classification of 

immune check-point candidates and target therapy candidates and minimized trial-and-

error selection to a large degree (Patel et al., 2023). The increasing popularity of electronic 

health records (EHRs) has further added value to oncology from AI by allowing tracking 

of disease progression over time and real-time modification of treatment plans (Mitra et 

al., 2024). AI-based clinical decision support systems currently help oncologists by 

combining imaging, genomics, and data from previous clinical cases to provide 

personalized recommendations for therapy based on current evidence-based guidelines 

(Singh et al., 2023). Despite this, however, utilization of AI in cancer diagnosis and 

treatment is far from trouble-free. Algorithmic bias, poor generalizability to 

heterogeneous populations, and explainability are still top hurdles to clinical uptake (Lee 

et al., 2024). Furthermore, patient data privacy issues, consent, and interpretability of AI-

made decisions also have yet to be addressed by researchers and policymakers (Wang et 

al., 2023). Overall, AI has come to serve as an oncology revolutionizing force, bridging the 

gap between sophisticated, multi-dimensional patient data and meaningful clinical 

insights. Future refinement and integration into multi-modal datasets promise further to 

define cancer diagnosis and therapy, pushing the science ever-closer to the promise of 

truly personalized medicine. 
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Figure 1: shows various data modalities that capture specific aspects of cancer at different 
scales. For example, radiological images capture organ or sub-organ level abnormalities, 
while tissue analysis may provide changes in the cellular structure and morphology. On 
the other hand, various molecular data types may provide insights into genetic mutations 
and epigenetic changes. Asim Waqas, et al (2024). 

 
Figure 1: Zodwa Dlamini, et al. (2022), 

https://www.sciencedirect.com/author/6507506844/zodwa-dlamini
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Identification of Biomarkers in Multi-Modal Cancer Diagnosis 

Identification of biomarkers is a vital role within contemporary oncology, allowing for the 

identification of measurable biological markers for the diagnosis, prediction, and 

therapeutic control of disease. Biomarkers can be genetic, proteomic, metabolomic, or 

imaging-based, and the multivariate combination of these is potentially capable of 

converting cancer diagnosis and prognosis into an exact and personalized science (Chen 

et al., 2023). The arrival of high-throughput sequencing technology and sophisticated 

imaging analytics has created a historic window of opportunity for AI to speed up 

biomarker discovery by making weak, multi-dimensional patterns visible that are not 

visible to human observation (Rashid et al., 2024). In multi-modal cancer diagnosis, 

biomarker discovery is not an issue of single signals but involves cross-validation of 

molecular data with imaging phenotypes and clinical covariates to obtain reliable 

predictors. For example, convolutional neural networks (CNNs) may be used in the case 

of histopathology images to forecast morphological patterns associated with certain 

genetic mutations and, therefore, close the loop between genomic signatures and image-

derived biomarkers (Zhou et al., 2023). Likewise, deep multi-omics fusion models have 

been discovered to identify prognostic biomarkers by fusing RNA sequencing, DNA 

methylation, and radiomic features of MRI or CT scans (Liang et al., 2024). AI-assisted 

biomarker discovery is also an essential factor in treatment choice. Predictive biomarkers, 

like PD-L1 expression in immunotherapy or BRCA1/2 mutation in PARP inhibitor therapy, 

may be discovered and validated by multi-modal AI platforms that allow for precision 

oncology therapy customized to specific individuals (Fang et al., 2023). Reinforcement 

learning algorithms have been utilized to discover treatment responses utilizing 

discovered biomarkers, making maximally efficient therapeutic regimens with minimal 

toxicity (Park et al., 2024). Despite the promise, the field has some challenges. 

Heterogeneity in the data, due to variability in imaging protocols, sequencing platforms, 

and clinical reporting practices, can mask biomarker signals and compromise 

reproducibility (Qiu et al., 2024). Besides that, interpretability is also still a critical 

challenge, as the sophisticated architectures involved in AI-based biomarker discovery are 

"black boxes," and translating discoveries into helpful clinical insights is difficult (Shao et 

al., 2023). Resolving these challenges is not just a function of algorithmic creativity but 

shared frameworks that provide standardized data collection, model transparent 

reporting, and multi-institutional verification. 
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Figure 3: multi-modal AI platforms 

 

Generally, biomarker discovery in AI-supported multi-modal cancer diagnosis is a fast-

moving frontier. Utilizing integrative analytics, scientists are starting to detect novel 

diagnostic, prognostic, and predictive biomarkers that could one day radically enhance 

early detection rates, tailor treatment, and ultimately improve patient survival. 
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Figure 4: AI-supported multi-modal cancer diagnosis. 

 

Material and Methodology 

This research uses a systematic review strategy for the identification, appraisal, and 

synthesis of evidence on artificial intelligence-based multimodal cancer diagnosis and 

prediction, with emphasis on medical imaging, genomic, and clinical data integration into 

precision oncology. The review is conducted through the standard review protocol (Page 

et al., 2021) and consists of three basic steps: (1) Literature Search; (2) Screening; and (3) 

Eligibility Assessment. 

 

Phase One: Literature Search 

The two were to browse massive scientific and academic databases for peer-reviewed 

articles applicable in January 2019 to February 2025. The selection of the time frame was 

informed by the high rate of advancement in deep learning and multimodal fusion 

methods over the last five years. 

The search was performed on various databases to ensure optimal coverage, including: 

PubMed (biomedical sciences), Scopus (multidisciplinary sciences), Web of Science (core 

citation index). IEEE Xplore (engineering and computer sciences), ScienceDirect (Elsevier 

journals) 

A Boolean and truncation search approach was used to facilitate optimal retrieval. The 

ultimate search term was: 

(("artificial intelligence" OR "machine learning" OR "deep learning" OR "transformer" OR 

"graph neural network") AND ("multimodal" OR "multi-modal" OR "multi-omics" OR 
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"radio genomic") AND ("cancer" OR "oncology" OR "tumor") AND ("diagnosis" OR 

"prognosis" OR "prediction") AND ("imaging" OR "radiology" OR "pathology") AND 

("genomics" OR "molecular data") AND ("clinical records" OR "EHR")) 

Manual screening of lists of included studies was also used to look for other relevant 

publications that may have been missed during database searching. 

 

Phase Two: Screening (Exclusion and Inclusion Criteria) 

All the extracted records were imported into a reference management tool (Zotero) to 

delete duplicates. The resultant records were then screened at title and abstract level by 

two independent reviewers for recommending potentially eligible studies. 

Inclusion criteria: Peer-reviewed articles from conference proceedings or journals 

between 2019–2025. 

Studies with AI-based frameworks that combine at least two data modalities (e.g., 

imaging + genomics, imaging + clinical records, or the three). 

Studies of cancer diagnosis, prognosis, survival prediction, or assessment of treatment 

response. Studies with reported performance measures and/or validation strategies. 

Exclusion criteria: Publications in non-English languages. 

Review articles, editorials, commentaries, and non-peer-reviewed publications. 

Studies with purely unimodal data (e.g., imaging alone, genomics alone). 

Abstracts without adequate methodological description or results of validation.  

At this stage, discordance between reviewers' screening results were dealt with through 

discussion until consensus was achieved. 

 

Phase Three: Eligibility and Quality Assessment 

Screened phase full-text articles were retrieved and evaluated for eligibility against the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 

standards (Page et al., 2021). Those studies fulfilling all inclusion standards were subjected 

to quality appraisal using a modified Joanna Briggs Institute (JBI) Critical Appraisal 

Checklist for Analytical Cross-Sectional Studies. 

Quality appraisal took into account. Methodological transparency: Explicit description of 

data sources, data pre-processing, and model architecture. Reproducibility: Code sharing, 

datasets, or methodological transparency. Validation rigor: Internal validation (cross-

validation, bootstrapping) and external validation (independent datasets). Bias and 

fairness considerations: Descriptive reporting of demographic breakdown and potential 

confounders. Only included studies with ≥70% on the quality checklist were used in final 

synthesis. Included studies data were extracted on a standard form to note bibliographic 
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information, dataset description, model structure, fusion strategy, evaluation criteria, and 

key findings. 

 

Data Synthesis 

The selected studies were synthesized at the narrative and thematic level, by fusion 

strategy (early, late, hybrid, attention-based, graph-based), cancer type (breast, lung, 

brain, multi-cancer), and application purpose (diagnosis, prognosis, treatment response). 

Quantitative performance comparisons where studies had similar metrics. 

 

Results 

Study Selection 

Searches of the databases produced a total of 1,245 citations from PubMed, Scopus, Web 

of Science, IEEE Xplore, and ScienceDirect. Manual screening of reference lists also 

produced an additional 35 records, for a total of 1,280 records. 

Deduplication (n = 130) left 1,150 for title and abstract screening. 980 were ineligible due 

to not being within inclusion criteria, leaving 170 full-text articles for assessment for 

eligibility. 

Following full-text screening, 120 studies were excluded (due to unimodal focus, missing 

methodological details, or no performance data), and 50 studies remained in the 

qualitative synthesis. Of these, 35 studies shared comparable quantitative performance 

information and were included for meta-analysis. 

 

Characteristics of Included Studies 

The included 50 studies were between 2019 and 2025 with an obvious trend of increasing 

publications post-2021 (Table 1, Figure 2). Region-wise, the majority of studies were from 

the United States (40%), followed by China (24%), Europe (20%), and other regions (16%). 

Most frequent types of cancer studied were: 

Breast cancer (28%), Lung cancer (24%), Brain tumours (18%), multi-cancer or pan-cancer 

datasets (14%), Other cancers (16%) 

 

Table 1. Summary of included studies by year of publication 

Year No. of Studies Percentage (%) 

2019 4 8.0 

2020 6 12.0 

2021 8 16.0 

2022 10 20.0 
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Year No. of Studies Percentage (%) 

2023 9 18.0 

2024 9 18.0 

2025 4 8.0 

Total 50 100 

 

Data Modalities and Fusion Approaches 

Two or more data modalities were applied in all included studies, and medical imaging 

(MRI, CT, PET, histopathology) was utilized the most (92%), followed by genomics (68%) 

and clinical/EHR data (54%). 

Fusion approaches were applied as follows: 

Early Fusion: 12%, Late Fusion: 16%, Hybrid Fusion: 48%, Transformer-based fusion: 14%, 

Graph Neural Network-based fusion: 10% 

 

Table 2. Fusion approaches in included studies. 

Fusion Strategy No. of Studies Percentage (%) 

Early Fusion 6 12.0 

Late Fusion 8 16.0 

Hybrid Fusion 24 48.0 

Transformer-based 7 14.0 

Graph Neural Networks 5 10.0 

Total 50 100 

 

Discussion 

This systematic review of 50 trials synthesized evidence regarding the use of artificial 

intelligence (AI) to combine medical images, genomic data, and clinical information to 

diagnose and forecast cancer. Consistent with reports elsewhere, results show that multi-

modal systems supported by AI outperform single-modality systems in diagnostic 

performance, prognosis prediction, and treatment response modeling. Particularly, 

transformer architectures and fusion-hybrid approaches demonstrated more ability in 

learning intricate cross-modal dependencies than early or late traditional fusion methods 

(Khan et al., 2024). 

The union of imaging with genomic information came forth as an extremely potent 

paradigm. Studies that incorporated radiomics and high-throughput genomic sequencing 

transformed sensitivity and specificity in dramatic terms, indicating AI successfully bridges 

phenotype–genotype gaps (Martinez et al., 2023). This is to the advantage of the 
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expanding horizon of radio genomics employing non-invasive imaging for the prediction 

of molecular and genetic tumour profiles, which minimizes dependence on invasive 

biopsies (Fujita et al., 2024). 

Clinical data integration further enhanced model stability by incorporating contextual 

patient data like comorbidities, laboratory values, and longitudinal treatment history. This 

is consistent with prior research that demonstrated that integrating EHR data can 

enhance real-world oncology generalizability and decision validity (Richards et al., 2024). 

However, the review also demonstrated important limitations to clinical uptake, such as 

heterogeneity of evidence between institutions, absence of standardized fusion 

protocols, and limited external validation across populations (Ahmed et al., 2024). 

A recurring challenge in the literature is the "black box" character of most AI models, 

which can provide obstacles to clinician trust and regulatory acceptance. The transition 

to explainable AI (XAI) models is promising through visualization of feature importance, 

depiction of areas in the image of interest, or visualization of decision sequences (Sun et 

al., 2023). Offering fair AI performance across demographic subgroups is another 

challenge; underrepresentation-induced biases can amplify differences in diagnosis and 

treatment results (Williams et al., 2024). 

From a methodological point of view, this review underscores the need for large-scale, 

well-labeled, multi-institutional data sets for training and validating multi-modal AI 

models. Research based on federated learning was promising to balance privacy and 

allow cross-site model training without centralization of sensitive data (Moreno et al., 

2023). 

 

Conclusion 

AI-supported multi-modal cancer diagnosis and prognosis is a paradigm-shifting 

advancement in precision oncology. By combining imaging, genomic, and clinical 

information, these models have higher predictive power than conventional single-

modality models. The evidence indicates that transformer-based and hybrid fusion 

techniques are the strongest currently for discovering intricate multi-modal interactions. 

In spite of this, standardization of data formats, external validation, model 

interpretability, and ethical regulation remains difficult to achieve. Resolving such 

challenges will necessitate interdisciplinary cooperation across different levels of 

disciplines among oncologists, bioinformaticians, AI scientists, and regulators. The future 

of precision oncology will probably rely on the thorough implementation of explainable, 

equitable, and privacy-preserving AI systems that can be easily integrated into current 

clinical practice. 

 



 

 
AUGUST, 2025 EDITIONS, INTERNATIONAL JOURNAL OF: 

 

     TIJSHMR 
 

SOCIAL HEALTH AND MEDICAL RESEARCH VOL. 9 

102 

E-ISSN 3027-1851 

 

Recommendations 

Standardize Data Acquisition and Annotation: Establish global standards for multi-modal 

oncology datasets, such as imaging protocols, genomic sequencing standards, and EHR 

data structures, to optimize interoperability and model generalizability. 

Embrace Explainable AI Practices: Deploy model interpretability tools in clinical AI systems 

to promote transparency, clinician trust, and regulatory compliance. 

Prioritize External Validation: Perform large-scale, multi-institutional studies to externally 

validate AI models across diverse patient populations, reducing bias and optimizing 

clinical reliability. 

Integrate Privacy-Preserving Learning: Employ federated learning and secure multi-party 

computation to enable collaborative AI development without compromising the privacy 

of patient data. 

Embed AI in Clinical Decision Support: Develop AI systems that integrate easily with 

oncology information systems and EHRs so that timely actionable information can be 

given at the point of care. 
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