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ABSTRACT
Artificial
network-based

neural
models were
developed for
assessing the
reliability of two
types of
machinery: cranes
and forklifts. This
was done to be
able to predict
the operating
conditions of the
machinery. It
entails the ability
to predict the
functional days of
the machinery
without failures
and the
days
they

exact
on which

would
experience failure

given a number of

input variables.
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INTRODUCTION

eliability and availability analysis for machinery
R maintenance, currently command high attraction from
the academic world, oil and gas sectors, manufacturing
industry, etc. These days, companies are established to meet
customer satisfaction by the production of quality products
aligning the aim and objectives to attract market demands. The
majority of both basic and complicated machines are made up
of a network of interconnected individual parts, subunits, and
units (Odeyar et al., 2023). This implies that the states and
mechanics of the numerous components, subunits, and pieces
have a significant impact on the overall machine operating
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The input variables considered in these models were an easy-start variable,
hours run per day and cumulative time between failure, while the output
variable was failure potential for a given day. The output variable assesses

whether the machinery would fail on a given working day or not. Hence, the

input data variables for cranes were obtained from Hyster RS45-27 CH and
Konecranes Liftace TFC 45 97-2002, while forklift input data was from Hyster
H6.00XL. The data was gotten from machines which were found in a Lagos
seaport. The neural network models were later developed, trained, tested and
validated using MATLAB. From the results, the PRN-LMA models for both crane
and forklifts gave the highest prediction accuracy.

Keywords: Cranes, Forklift, Pattern Recognition, Reliability

standard. Generally speaking, when one part fails, it can lead to the failure of other parts,
or the state of one part can influence the functioning of other parts and ultimately the
machine as a whole. Because machine components are interdependent, the condition of
one part in a mechanical system can influence the condition and deterioration of other
parts, suggesting that real and complex systems might exhibit stochastic dependence
(Dao & Zuo, 2015). In addition to being far more complicated, it is anticipated that the
devices of this century will be more reliable and automated. As systems become
automated, software maintenance will become even more crucial, if not as important as
machine maintenance (Gala et al., 2016; Achour et al., 2017). Realizing potential benefits
and converting them into income requires new ways of thinking and doing things. Overall,
businesses using contemporary thinking to develop an equipment management strategy
that effectively utilizes new knowledge, technology, and techniques will be the most
successful (Herath et al., 2021).

Manufacturing systems can now monitor physical processes and make intelligent
decisions by collaborating and communicating in real-time with people, machines,
sensors, and other devices thanks to the Internet of Things and machine learning
techniques (Tienbui et al., 2019). By employing machine learning technologies that learn
from experience, artificial intelligence helps manufacturers eliminate equipment
downtime, identify production flaws, enhance the supply chain, and expedite design
timelines. More study was necessary due to the abrupt and unplanned breakdown of
machinery-in-operation modules and urgent demands. It has not yet been possible to
estimate failure times with accuracy and precision. Creating predictive models that can
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detect possible malfunctions or failures in general algorithm lifting equipment was the
main goal of the study on the prediction of crane and forklift failure using artificial neural
network models. By facilitating a good maintenance style and decreasing unscheduled
downtime, this advancement would increase the effectiveness of lifting machinery
operations.

Literature Review

In the world of information technology (IT), an artificial neural network (ANN) is a
hardware and/or software system that mimics the operation of neurons in the human
brain. Neural networks, or artificial neural networks (ANNs), are a class of deep learning
innovation that is involved in the artificial intelligence (Al) domain. Because artificial
neural networks have an essential quality that enables an approximate description of any
constant dependence using a neural network with suitable design and weight variables
they offer an outstanding analytical approach to address nonlinear challenges (Tenney et
al., 2020). ANN is developed using the structure and presumption of a biological neural
network, similar to that of an actual human being. The industrial applications of these
advancements are often directed toward solving challenging problems in pattern
recognition or signal processing. Figure 1 shows a simple structure of an ANN with four
nodes in the input layer, four nodes in the hidden layer, and two nodes in the output layer.
Neurons are connected to form an artificial neural network. Typically, the neurons are put

together in layers (Barad et al., 2012). Numerous basic neuron processing components,
known as nodes or neurons, make up each layer.
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Figure 1: The Artificial Neural Network Architecture (source: Zhang et al., 1998).
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These neurons communicate with one another through numerically weighted
connections (Peng et al., 2010). A neural network typically has n layers of neurons, of
which two are input and output layers. While the latter is the final layer and the one that
outputs the calculations' results, the former is the first and only layer that receives and
sends external signals. In relays, the n-2 inner ones known as hidden layers extract
pertinent characteristics or patterns from received signals.

Promising techniques for pattern detection of previous data from machine attributes are
available in machine learning (a branch of artificial intelligence) (Caggiano et al., 2019).
The tools are programmed to support two distinct learning paradigms for nonlinear data
analysis: supervised and unsupervised (Wachowiak et al., 2019). A stimulus is presented
to the learner, who classifies it, and then receives corrected feedback in supervised
classification learning (Love, 2002).

There is a gap in supervised machine learning models, which indicates the need and
possibility to use unidentified data in unsupervised methods of learning (Jati & Georgiou,
2019), regardless of all the exciting journals with supervised DP models for breakdown
classification in rotating equipment (Li et al., 2020; Souza et al., 2021). Yang et al. (2021)
reviewed the applications of artificial neural networks in pavement engineering. It was
recommended that CNN-based pavement health inspection and monitoring could be
better because of its capabilities to substitute human operation.

Applications of Artificial Neural Networks (ANN)

Robles-Velasco et al. (2021) used an Artificial Neural Network (ANN) based on tangible and
procedural input attributes, to categorize pipes according to their propensity to fail. The
methods of under- and over-sampling were also examined. Kutytowska. (2014) submitted
that the application of ANN to model the damage frequency in a system required large
data in thousands and not in hundreds in order to obtain accurate results. Artificial neural
networks were applied to examine the failure history in the essential nine primary engine-
related subsystems, which is consistent with condition-based maintenance applications
and also aids in highlighting probable breakdowns in the historical failure data (Goksu &
Erginer, 2020). According to Chaudhari & Dhawale (2017), artificial neural network (ANNs)
models were utilized to predict solid waste. An ANN was also employed in image
processing in a variety of industries, including construction, transportation, remote
sensing, human-computer interface, and language recognition.

Machine Failure
Machine failure can be defined in a variety of ways. For example, it can be the difference
between the target and current level of performance, a deviation from the standard or
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desired performance, or an unfavorable outcome of a job (Anandh et al., 2014). In other
words, failure can be defined as the difference between the actual and expected
outcomes of a system. The operational efficiency of any manufacturing company is
negatively impacted by machine breakdowns. In a traditional manufacturing system, it
can be challenging to identify significant failures and investigate their relationships with
other process factors (Ahmad et al., 2018).

Machinery breakdown could result in output disruption, therefore, leading to a loss of the
machine’s availability (Kolte & Dabade, 2017). Poor availability and reliability lead to
failures in production units. Furthermore, degradation affects the equipment's life span
at distinct periods, lowering the system's reliability (Bansal et al., 2020). Generally
speaking, machinery experiences a protracted degeneration process that could take
several years or months to go from operational to downtime.

Machine failure is a frequent occurrence in business, which presents challenges for both
the management responsible for the equipment's availability and the technician who
maintains it. Although it may seem like a maintenance issue, it affects all stakeholders in
a company because the failure of a single piece of equipment can result in complete
downtime and production loss until the equipment is repaired or replaced (Ezendiokwere
etal., 2021). As aresult, despite our best efforts to prevent these failures, they do happen
and must be continuously managed (Payette & Abdul-Nour, 2023).

Nonetheless, we are aware that accurately defining the issue and locating its core cause
decide how effective management is. The failure rate of the system's other dependent
units can change when one or more components fail. This is an illustration of dependent
reliability, and it falls into one of two categories: positive or negative. If the failure of one
component increases the likelihood that another component would fail, then the reliance
is seen as positive. Conversely, negative dependency happens when one component fails
and lessens the chance that another component will fail (Fontes & Pereira, 2016).

Several study fields are included in reliability engineering, including asset management
(AM), prognostics and health management (PHM), and reliability, availability,
maintainability, and safety (RAMS). Due to problems with the control panel, gearbox,
hydraulic motor, pneumatic pump, and other production system and function failures,
several production lines and manufacturing industries have frequently been producing
below capacity. While increased productivity would increase revenue, better reliability
and availability assessment for machinery maintenance will lower maintenance expenses.
Better funding for staff and more affordable prices for end customers will result from
higher income and lower operating costs (Soualhi et al., 2020).
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Numerous studies have demonstrated that a fundamental component in any
manufacturing, industrial, or service company is the cost of crucial equipment failure or
unavailability. A shift from a component-based to a systems-based approach to
addressing maintenance issues is required in the maintenance plan. For this reason, failure
analysis with artificial neural networks (ANNs) continues to be a superior technique for
critical equipment maintenance management (Serey et al., 2023). Investigating ANNs in
the creation of an equipment maintenance model that will guarantee notable increases in
system availability, productivity, and reliability is, thus, this study's highlight.

Methodology

There are several crucial elements in the workflow for designing a general artificial neural
network (Fontes & Pereira, 2016). A collection of cranes and forklift machines from the
African Global Logistics, Apapa-Lagos were used to develop the artificial neural network-
based models. These consist of gathering and preparing data, building and configuring
networks, initializing weights and biases, training networks, validating them (by post-
training analysis), and demonstrating them. The African Global Logistics bonded terminal
provided the failure data that was utilized in this study's artificial neural network machine
learning model development. The raw failure statistics were tallied by operating month,
and each table included the date, the start and stop times, the hours of operation each
day, and the frequency of machine failures. Furthermore, the raw data was similarly used
to construct the time between failure (TBF) statistics. Tables 1-6 in the appendix shows
some of the obtained results.

Initially, a training, test, and validation data set in the ratio 60:20:20 was created from
these input variables. Later, a feed forward neural network for pattern identification and
classification was fed the entire collection of data. Using computer algorithms and
important traits or regularities as a basis, pattern recognition is the process of classifying
incoming data into objects, classes, or categories (Serey et al., 2023). Feed forward neural
networks that can be trained to categorize inputs based on target classes are called
pattern recognition networks, or PRNs. Although it is infrequently utilized for reliability
and availability research, it has applications in fields including computer vision, image
segmentation, object detection, radar processing, speech recognition, and text
classification (Odeyar et al., 2022).

Soualhi et al. (2020) contended, however, that given its consistent outcomes and ability
to work with artificial intelligence tools like machine learning, this approach offers
numerous benefits for defect detection and diagnostics. For pattern recognition
networks, the target data typically consists of vectors with all zero values except for the

Tllsnn E-ISSN 3026-8796
P-ISSN 3026-8095




NOVEMBER, 2024 EDITIONS. INTERNATIONAL JOURNAL OF:

SCIENCE RESEARCH AND TECHNOLOGY VOL. 6

class they are supposed to represent, which has a 1in element i. The type of data that was
provided led to the selection of a categorization model. The artificial neural network
model was created with MATLAB.

Initially, the neural network architecture with the lowest mean square error was found
through trial and error. Three hidden layers, an output layer, and an input layer make up
the final architecture that was chosen. There were a total of 10 neurons in each of the first
and last hidden layers, and 20 neurons in the second hidden layer. The machine failure
potential was the output variable in the final model, whereas the easy start status (which
indicates whether the machine was readily started or not), daily running hours, and time
between failures were the input variables. Each of the MATLAB outcomes was later
examined separately. The MATLAB results were first evaluated individually before a
comparative statistical analysis of the models was later carried out. Figure 1 shows the
MATLAB presentation of the utilized pattern recognition neural network architecture.
To develop a model from training data, machine learning methods employ it without
explicit programming to make conclusions or predictions. Reliability and risk assessment
using machine learning has garnered significant attention from investigators and
managers in recent years. It is possible to find significant parameters that predict failures
as well as anticipate failures themselves using a machine learning approach. Figure 2
illustrates a fundamental comprehension of ML implementation for downtime evaluation.

Output

Figure 1: A MATLAB presentation of the utilized pattern recognition neural network
architecture.

ML model

Data

Acquisition ) )

Model
Validation

) Final Model

Figure 2: Flow chart of adopted research methodology
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Optimization Algorithms

Series of Optimization Algorithms were utilized in training the pattern recognition neural
network models. These Algorithms include the following; Levenberg Marquardt
Algorithm, Bayesian Regularization (BR) Algorithm, Conjugate Gradient Algorithm,
Broyden, Fletcher, Goldfarb, and Shanno (BFGS) Quasi-Newton, and One Step Secant
Method.

Levenberg-Marquardt Algorithm (LMA)
Levenberg-Marquardt (LMA) is employed to identify dynamic least squares solutions (Wu
et al., 2020). For small and medium-sized data sets, LMA works well. Compared to other
algorithms, LMA operates faster and has steady convergence. Equation (1) and (2) can be
used to calculate the gradient (g) of the Hesian (H) matrix style, which is used in the
process of updating the weights and biases (Chu et al., 2017).

H=]"] Q)

g=]J"e (2)

where J is the Jacobian matrix, e is the error vector, and T is the matrix transpose
operator. The weights in the MLP weights optimization situation are represented by the
x term in Equation (3).

xip1 =x—(H=—AD"'xg (3)

where, x; = (V11, V12, V13, V14, - Vji 5 Vo1, Vo2, Vo3,Vo4, - Voj; W11, Wiz, W13 W14, v
Vji; Wo1, Wo2, Wo3Woa, --,Wok )- Ais the learning constant and | is the identity matrix.
Bayesian Regularization (BR) Algorithm
The development phase is enhanced by the Bayesian Regularization (BR) approach, whic
h optimizes the network's weights and squared errors. By using the weights and bias sta
ndard deviation, BR modifies the error performance. Equation (4) illustrates how the BR
approach improves error efficiency by including weight and standard deviation bias
(Baghirli, 2015).

F(w) = ak,, + BEp 4)

where E,, and Ep represent the total number of network errors and the squared
network weight, @ and [ are parameters of the goal (regularization) function. Equations
(5) and (6) yield the following results for the E,,, and E;, functions:

1 n
By = ;(woz 5)
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1 n
Ep = - Z(ti — a;)? (6)
-1

where q; is the i*"data output, t; is the goal value of the t** data, and n is the amount of
inputs to the training data, along with the weights or limits for the t* data. The approach
of Bayesian Regularization artificial neural network programme is illustrated in Figure 3.

Figure 3: Concept of Bayesian

¢ Regularization Approach
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The conjugation direction serves
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Y
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function F (w)

on each iteration. It is intended to
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Converge
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Pi=—9i+BiPi-1 9)
The method used to calculate the constant f; distinguishes the various variants of the
conjugate gradient technique. The process for the Fletcher-Reeves upgrade is as follows:

T
9igi
i =T 10
Bi o0 (10)

Broyden, Fletcher, Goldfarb and Shanno (BFGS) Quasi-Newton
Newton's method can be used instead of conjugate gradient methodologies for rapid
optimization. The fundamental action in Newton's technique is as in Equation (11).
X1 =X — A7 g (1)

where A7 is the performance index's Hessian matrix (second derivatives) for the present
weight and bias settings. When computing performance derivatives concerning the
weight and bias variables X, back-propagation is typically used. Each value is modified
according to Equation (12)

Xiy1 =X +adX (12)

where, dX is the search direction. Subsequently, the search direction is computed
according to Equation (13).

—H
X =— (13)

where, gXis the slope and H is the estimated Hessian matrix.

One-Step Scant Method (OSS)

A novel method to close the gap between the quasi-Newton (secant) technique and the
conjugate gradient algorithm is the One-Step-Secant (OSS) method. The OSS technique
assumes that the identity matrix was the earlier Hessian at each iteration and does not
keep the whole Hessian matrix. Equation (14) is used to change every single value.

Xiy1 =X +adX (14)
where, dX is the search direction. The opposite end of the success curve is the initial
search orientation. Equation (15) is then used to calculate the search orientation using the
current curve, the previous steps, and the levels.

dX = —gX + Ac * X_gtep + Bc x dgX (15)

where, gXis the slope, Xstep is the variation in the weights on the earlier iteration and dgX
is the variation in slope from the final iteration.
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Results and Discussion

The illustration of findings in the way of tables and figures are presented and discussed
below.

100

90

80 -
70 -

60 -
W Training
50
M Validation
40 -
Testing
30

Prediction accuracy (%)

Total
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10
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Figure 2: Comparative percentage accuracies of training, validation, testing and combined
data for cranes

Figure 2 shows the comparative percentage prediction accuracies of training, validation,
testing and combined data for cranes. From the figure, it can be deduced that the models
that posted highest training accuracies were PRN-LMA and PRN-CGF with accuracies of
87.6%, followed by PRN-OSS with a training data accuracy of 87.1%. PRN-BFG had a training
data accuracy of 83.3% while the least training data accuracy went to PRN-BR, which had
a training data accuracy of 76.8%. The highest test data accuracy went to PRN-BFG with
an accuracy of 91.1%, followed by PRN-LMA and PRN-CGF with 84.4% accuracies
respectively. The least test data accuracies belonged to PRN-BR and PRN-OSS with test
data accuracies of 75.6% and 68.9%.

The highest validation data accuracy was for PRN-OSS with an accuracy of 91.1%, followed
by PRN-LMA and PRN-BFG with percentage accuracies of 86.7% and 84.4% respectively.
But the least validation accuracy went to PRN-CGF with an accuracy of 82.2%. Meanwhile,
there was no validation accuracy for PRN-BR model since its optimization algorithm does
not work with a validation data. However, for the combined data, the highest prediction
accuracy went to PRN-LMA with an accuracy of 87%, followed by PRN-CGF with an overall
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prediction accuracy of 86.3%. Next were PRN-OSS and PRN-BFG with prediction accuracies
of 84.9% and 84.6% respectively, while PRN-BR was the least accurate, with an accuracy of
76.6%.

100
90
80
70
60
50
40
30
20
10

81.7 80.3 81
75.1

M Training
m Validation

Testing

Prediction accuracy (%)

Total

PRN-LMA PRN-BR PRN-CGF PRN-BFG PRN-0OSS
Model

Figure 3: Comparative percentage prediction accuracies of training, validation, testing and
combined data for forklifts

Figure 3 shows the comparative percentage prediction accuracies of training, validation,
testing and combined data for cranes. From the figure, it can be deduced that the models
that posted highest training accuracies were PRN-LMA and PRN-BFG with accuracies of
94.6% and 84.2%, followed by PRN-OSS and PRN-CGF with a training data accuracies of
82.3%. Theleast training data accuracy went to PRN-BR, which had a training data accuracy
of 74.8%. The highest test data accuracy went to PRN-LMA with an accuracy of 79.1%,
followed by PRN-OSS and PRN-BR with 76.7% accuracies respectively. The least test data
accuracies belonged to PRN-CGF and PRN-BFG with test data accuracies of 74.4% and
65.1%.

The highest validation data accuracy was for PRN-LMA with an accuracy of 93%, followed
by PRN-CGF and PRN-OSS with percentage accuracies of 86% and 79.1% respectively. But
the least validation accuracy went to PRN-BGF with an accuracy of 76.7%. Meanwhile,
there was no validation accuracy for PRN-BR model since its optimization algorithm does
not work with a validation data. However, for the combined data, the highest prediction
accuracy went to PRN-LMA with an accuracy of 92%, followed by PRN-CGF with an overall
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prediction accuracy of 81.7%. Next were PRN-OSS and PRN-BFG with prediction accuracies
of 81.0% and 80.3% respectively, while PRN-BR was the least accurate, with an accuracy of
75.1%.
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Percentage accuracy (%)
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20
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PRN-LMA PRN-BR PRN-CGF PRN-BFG PRN-0OSS
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Figure 4: Comparative reliability and availability predictions of various models for cranes
Figure 4 shows the comparative reliability and availability predictions of various models
for cranes. From the figure, it can be noticed that the model that predicted the highest
percentage of the functional days for cranes was PRN-BR, which correctly predicted all
the days the cranes were functional. This was followed by PRN-LMA and PRN-OSS, which
correctly predicted 95.2% and 93.4% of all functional days of the cranes considered. The
models that predicted the least functional days were PRN-BFG and PRN-CGF with 91.7%
and 88.6% respectively.

The model that correctly predicted days of failure for cranes was PRN-CGF, with a
prediction accuracy of 78.6%, followed by PRN-BFG and PRN-LMA which correctly
predicted 61.4% and 60% of the days of failure for cranes respectively. Next was PRN-OSS,
which correctly predicted 57.1% of the days of failure. But PRN-BR could not correctly
predict any of the failure days of the crane, hence it had 0%.

TllsnnT E-ISSN 3026-8796
P-ISSN 3026-8095




NOVEMBER, 2024 EDITIONS. INTERNATIONAL JOURNAL OF:

SCIENCE RESEARCH AND TECHNOLOGY VOL. 6

100

96.3
100 -

90 1 9.2
80 -
70
60
50 -
40
30
20 -

M Functional

M Failure

Percentage accuracy (%)

PRN-LMA PRN-BR PRN-CGF PRN-BFG PRN-0OSS
Model

Figure 5; Comparative reliability/availability predictions of models for forklifts

Figure 5 shows the comparative reliability and availability predictions of various models
for forklifts. From the figure, it can be noticed that the model that predicted the highest
percentage of the functional days for cranes was again PRN-BR, which correctly predicted
all the days the cranes were functional. This was followed by PRN-LMA and PRN-OSS,
which correctly predicted 96.3% and 91.7% of all functional days of the forklift considered.
The models that predicted the least functional days were PRN-BFG and PRN-CGF with
89.9% and 82.5% respectively.

The models that correctly predicted days of failure for forklift were PRN-LMA and PRN-
CGF, with prediction accuracies of 79.2% each, followed by PRN-BFG, which correctly
predicted 51.4% of the days of failure for forklift. Next was PRN-OSS, which correctly
predicted 48.6% of the days of failure. But PRN-BR could not correctly predict any of the
failure days of the crane, hence it had 0%.

Conclusion
From the research and findings obtained, the following conclusions could be drawn:
a. Artificial neural network-based models were developed for assessing the
reliability of both cranes and forklift.
b. Insights gained from the results showed that the PRN-LMA models for both crane
and forklifts were found to give the highest prediction accuracy.
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c.  On the other hand, the Bayesian regularization models (PRN-BR) gave the least
prediction accuracy for both cranes and forklifts.

d. Meanwhile, the PRN-CGF model, followed by the PRN-LMA model were able to
predict the highest number of failure days for cranes, while both models also gave
the highest prediction accuracy for failure days.

e. Despite the fact that the Bayesian regularization models gave the highest
functional days predictions, yet they could not correctly predict any of the failure
days. This explains why they ranked low in terms of prediction accuracy.

Recommendations
From the observation and results obtained, it is therefore recommended that:
a. The Federal Government of Nigeria and other larger companies should adopt the
developed models to optimize the cost of purchasing sophisticated software.
b. For more accurate results, further study should be conducted combining artificial
neural networks and machine learning to assess the reliability of other haulage or
lifting machinery.
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Appendix
Table 1 Comparative percentage prediction accuracies of training, validation, testing and combined data for
cranes

Model Data Percentage Accuracy (%)
PRN-LMA Training 87.6
Validation 86.7
Testing 84.4
Total 87.0
PRN-BR Training 76.8
Validation -
Testing 75.6
Total 76.6
PRN-CGF Training 87.6
Validation 82.2
Total 84.4
Testing 86.3
PRN-BFG Training 83.3
Validation 84.4
Testing 91.1
Total 84.6
PRN-OSS Training 871
Validation 91.1
Testing 68.9
Total 84.9

Table 2 Comparative percentage prediction accuracies of training, validation, testing and combined data for
forklifts

Ode Data Pe e age A
5

PRN-LMA Training 94.6
Validation 93.0
Testing 79.1
Total 92.0

PRN-BR Training 74.8
Validation -
Testing 76.7
Total 75.1

PRN-CGF Training 82.3
Validation 86.0
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Testing 74.4
Total 81.7
PRN-BFG Training 84.2
Validation 76.7
Testing 65.1
Total 80.3
PRN-OSS Training 82.3
Validation 79.1
Testing 76.7
Total 81.0

Table 3 Comparative reliability/availability predictions of models for cranes

Model Predicted status Percentage Accuracy (%)
PRN-LMA Functional 95.2
Failure 60.0
PRN-BR Functional 100
Failure 0
PRN-CGF Functional 88.6
Failure 78.6
PRN-BFG Functional 91.7
Failure 61.4
PRN-OSS Functional 93.4
Failure 57.1
Table 4 Comparative reliability/availability predictions of models for forklifts

Model

Predicted status

Percentage Accuracy (%)

PRN-LMA Functional 96.3
Failure 79.2
PRN-BR Functional 100
Failure 0
PRN-CGF Functional 82.5
Failure 79.2
PRN-BFG Functional 89.9
Failure 51.4
PRN-OSS Functional 91.7
Failure 48.6
Table 5 Classification bias for various models developed for cranes
Model Classification Bias (%)
PRN-LMA True positive 88.6
True negative 79.2
PRN-BR True positive 76.6
True negative 0
PRN-CGF True positive 93.1
True negative 67.9
PRN-BFG True positive 88.6
True negative 69.4
PRN-OSS True positive 87.7
True negative 72.7
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Table 6 Classification bias for various models developed for forklifts

Model Classification IE ¢
PRN-LMA True positive 93.3
True negative 87.7
PRN-BR True positive 75.1
True negative 0
PRN-CGF True positive 92.3
True negative 60.0
PRN-BFG True positive 84.8
True negative 62.7
PRN-OSS True positive 84.3
True negative 66.0
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