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INTRODUCTION 
eliability and availability analysis for machinery 

maintenance, currently command high attraction from 

the academic world, oil and gas sectors, manufacturing 

industry, etc. These days, companies are established to meet 

customer satisfaction by the production of quality products 

aligning the aim and objectives to attract market demands. The 

majority of both basic and complicated machines are made up 

of a network of interconnected individual parts, subunits, and 

units (Odeyar et al., 2023). This implies that the states and 

mechanics of the numerous components, subunits, and pieces 

have a significant impact on the overall machine operating  
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standard. Generally speaking, when one part fails, it can lead to the failure of other parts, 

or the state of one part can influence the functioning of other parts and ultimately the 

machine as a whole. Because machine components are interdependent, the condition of 

one part in a mechanical system can influence the condition and deterioration of other 

parts, suggesting that real and complex systems might exhibit stochastic dependence 

(Dao & Zuo, 2015). In addition to being far more complicated, it is anticipated that the 

devices of this century will be more reliable and automated. As systems become 

automated, software maintenance will become even more crucial, if not as important as 

machine maintenance (Gala et al., 2016; Achour et al., 2017). Realizing potential benefits 

and converting them into income requires new ways of thinking and doing things. Overall, 

businesses using contemporary thinking to develop an equipment management strategy 

that effectively utilizes new knowledge, technology, and techniques will be the most 

successful (Herath et al., 2021). 

Manufacturing systems can now monitor physical processes and make intelligent 

decisions by collaborating and communicating in real-time with people, machines, 

sensors, and other devices thanks to the Internet of Things and machine learning 

techniques (Tienbui et al., 2019). By employing machine learning technologies that learn 

from experience, artificial intelligence helps manufacturers eliminate equipment 

downtime, identify production flaws, enhance the supply chain, and expedite design 

timelines. More study was necessary due to the abrupt and unplanned breakdown of 

machinery-in-operation modules and urgent demands. It has not yet been possible to 

estimate failure times with accuracy and precision. Creating predictive models that can 

The input variables considered in these models were an easy-start variable, 

hours run per day and cumulative time between failure, while the output 

variable was failure potential for a given day. The output variable assesses 

whether the machinery would fail on a given working day or not. Hence, the 

input data variables for cranes were obtained from Hyster RS45-27 CH and 

Konecranes Liftace TFC 45 97-2002, while forklift input data was from Hyster 

H6.00XL. The data was gotten from machines which were found in a Lagos 

seaport. The neural network models were later developed, trained, tested and 

validated using MATLAB. From the results, the PRN-LMA models for both crane 

and forklifts gave the highest prediction accuracy. 
 
Keywords: Cranes, Forklift, Pattern Recognition, Reliability 
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detect possible malfunctions or failures in general algorithm lifting equipment was the 

main goal of the study on the prediction of crane and forklift failure using artificial neural 

network models. By facilitating a good maintenance style and decreasing unscheduled 

downtime, this advancement would increase the effectiveness of lifting machinery 

operations. 

 

Literature Review 

In the world of information technology (IT), an artificial neural network (ANN) is a 
hardware and/or software system that mimics the operation of neurons in the human 
brain. Neural networks, or artificial neural networks (ANNs), are a class of deep learning 
innovation that is involved in the artificial intelligence (AI) domain. Because artificial 
neural networks have an essential quality that enables an approximate description of any 
constant dependence using a neural network with suitable design and weight variables 
they offer an outstanding analytical approach to address nonlinear challenges (Tenney et 
al., 2020). ANN is developed using the structure and presumption of a biological neural 
network, similar to that of an actual human being. The industrial applications of these 
advancements are often directed toward solving challenging problems in pattern 
recognition or signal processing. Figure 1 shows a simple structure of an ANN with four 
nodes in the input layer, four nodes in the hidden layer, and two nodes in the output layer. 
Neurons are connected to form an artificial neural network. Typically, the neurons are put 

together in layers (Barad et al., 2012). Numerous basic neuron processing components, 

known as nodes or neurons, make up each layer.  

 

 
Figure 1:   The Artificial Neural Network Architecture (source: Zhang et al., 1998). 
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These neurons communicate with one another through numerically weighted 

connections (Peng et al., 2010). A neural network typically has n layers of neurons, of 

which two are input and output layers. While the latter is the final layer and the one that 

outputs the calculations' results, the former is the first and only layer that receives and 

sends external signals. In relays, the n-2 inner ones known as hidden layers extract 

pertinent characteristics or patterns from received signals. 

Promising techniques for pattern detection of previous data from machine attributes are 

available in machine learning (a branch of artificial intelligence) (Caggiano et al., 2019). 

The tools are programmed to support two distinct learning paradigms for nonlinear data 

analysis: supervised and unsupervised (Wachowiak et al., 2019). A stimulus is presented 

to the learner, who classifies it, and then receives corrected feedback in supervised 

classification learning (Love, 2002). 

There is a gap in supervised machine learning models, which indicates the need and 

possibility to use unidentified data in unsupervised methods of learning (Jati & Georgiou, 

2019), regardless of all the exciting journals with supervised DP models for breakdown 

classification in rotating equipment (Li et al., 2020; Souza et al., 2021). Yang et al. (2021) 

reviewed the applications of artificial neural networks in pavement engineering. It was 

recommended that CNN-based pavement health inspection and monitoring could be 

better because of its capabilities to substitute human operation. 

 

Applications of Artificial Neural Networks (ANN) 

Robles-Velasco et al. (2021) used an Artificial Neural Network (ANN) based on tangible and 

procedural input attributes, to categorize pipes according to their propensity to fail. The 

methods of under- and over-sampling were also examined. Kutyłowska. (2014) submitted 

that the application of ANN to model the damage frequency in a system required large 

data in thousands and not in hundreds in order to obtain accurate results. Artificial neural 

networks were applied to examine the failure history in the essential nine primary engine-

related subsystems, which is consistent with condition-based maintenance applications 

and also aids in highlighting probable breakdowns in the historical failure data (Goksu & 

Erginer, 2020). According to Chaudhari & Dhawale (2017), artificial neural network (ANNs) 

models were utilized to predict solid waste. An ANN was also employed in image 

processing in a variety of industries, including construction, transportation, remote 

sensing, human-computer interface, and language recognition. 

 
Machine Failure 

Machine failure can be defined in a variety of ways. For example, it can be the difference 

between the target and current level of performance, a deviation from the standard or 
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desired performance, or an unfavorable outcome of a job (Anandh et al., 2014). In other 

words, failure can be defined as the difference between the actual and expected 

outcomes of a system. The operational efficiency of any manufacturing company is 

negatively impacted by machine breakdowns. In a traditional manufacturing system, it 

can be challenging to identify significant failures and investigate their relationships with 

other process factors (Ahmad et al., 2018). 

Machinery breakdown could result in output disruption, therefore, leading to a loss of the 

machine’s availability (Kolte & Dabade, 2017). Poor availability and reliability lead to 

failures in production units. Furthermore, degradation affects the equipment's life span 

at distinct periods, lowering the system's reliability (Bansal et al., 2020). Generally 

speaking, machinery experiences a protracted degeneration process that could take 

several years or months to go from operational to downtime. 

Machine failure is a frequent occurrence in business, which presents challenges for both 

the management responsible for the equipment's availability and the technician who 

maintains it. Although it may seem like a maintenance issue, it affects all stakeholders in 

a company because the failure of a single piece of equipment can result in complete 

downtime and production loss until the equipment is repaired or replaced (Ezendiokwere 

et al., 2021). As a result, despite our best efforts to prevent these failures, they do happen 

and must be continuously managed (Payette & Abdul-Nour, 2023). 

Nonetheless, we are aware that accurately defining the issue and locating its core cause 

decide how effective management is. The failure rate of the system's other dependent 

units can change when one or more components fail. This is an illustration of dependent 

reliability, and it falls into one of two categories: positive or negative. If the failure of one 

component increases the likelihood that another component would fail, then the reliance 

is seen as positive. Conversely, negative dependency happens when one component fails 

and lessens the chance that another component will fail (Fontes & Pereira, 2016).  

Several study fields are included in reliability engineering, including asset management 

(AM), prognostics and health management (PHM), and reliability, availability, 

maintainability, and safety (RAMS). Due to problems with the control panel, gearbox, 

hydraulic motor, pneumatic pump, and other production system and function failures, 

several production lines and manufacturing industries have frequently been producing 

below capacity. While increased productivity would increase revenue, better reliability 

and availability assessment for machinery maintenance will lower maintenance expenses. 

Better funding for staff and more affordable prices for end customers will result from 

higher income and lower operating costs (Soualhi et al., 2020).  
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Numerous studies have demonstrated that a fundamental component in any 

manufacturing, industrial, or service company is the cost of crucial equipment failure or 

unavailability. A shift from a component-based to a systems-based approach to 

addressing maintenance issues is required in the maintenance plan. For this reason, failure 

analysis with artificial neural networks (ANNs) continues to be a superior technique for 

critical equipment maintenance management (Serey et al., 2023). Investigating ANNs in 

the creation of an equipment maintenance model that will guarantee notable increases in 

system availability, productivity, and reliability is, thus, this study's highlight. 

 

Methodology 

There are several crucial elements in the workflow for designing a general artificial neural 

network (Fontes & Pereira, 2016). A collection of cranes and forklift machines from the 

African Global Logistics, Apapa-Lagos were used to develop the artificial neural network-

based models. These consist of gathering and preparing data, building and configuring 

networks, initializing weights and biases, training networks, validating them (by post-

training analysis), and demonstrating them. The African Global Logistics bonded terminal 

provided the failure data that was utilized in this study's artificial neural network machine 

learning model development. The raw failure statistics were tallied by operating month, 

and each table included the date, the start and stop times, the hours of operation each 

day, and the frequency of machine failures. Furthermore, the raw data was similarly used 

to construct the time between failure (TBF) statistics. Tables 1-6 in the appendix shows 

some of the obtained results. 

Initially, a training, test, and validation data set in the ratio 60:20:20 was created from 

these input variables. Later, a feed forward neural network for pattern identification and 

classification was fed the entire collection of data. Using computer algorithms and 

important traits or regularities as a basis, pattern recognition is the process of classifying 

incoming data into objects, classes, or categories (Serey et al., 2023). Feed forward neural 

networks that can be trained to categorize inputs based on target classes are called 

pattern recognition networks, or PRNs. Although it is infrequently utilized for reliability 

and availability research, it has applications in fields including computer vision, image 

segmentation, object detection, radar processing, speech recognition, and text 

classification (Odeyar et al., 2022).  

Soualhi et al. (2020) contended, however, that given its consistent outcomes and ability 

to work with artificial intelligence tools like machine learning, this approach offers 

numerous benefits for defect detection and diagnostics. For pattern recognition 

networks, the target data typically consists of vectors with all zero values except for the 
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class they are supposed to represent, which has a 1 in element i. The type of data that was 

provided led to the selection of a categorization model. The artificial neural network 

model was created with MATLAB.  

Initially, the neural network architecture with the lowest mean square error was found 

through trial and error. Three hidden layers, an output layer, and an input layer make up 

the final architecture that was chosen. There were a total of 10 neurons in each of the first 

and last hidden layers, and 20 neurons in the second hidden layer. The machine failure 

potential was the output variable in the final model, whereas the easy start status (which 

indicates whether the machine was readily started or not), daily running hours, and time 

between failures were the input variables. Each of the MATLAB outcomes was later 

examined separately. The MATLAB results were first evaluated individually before a 

comparative statistical analysis of the models was later carried out.  Figure 1 shows the 

MATLAB presentation of the utilized pattern recognition neural network architecture. 

To develop a model from training data, machine learning methods employ it without 

explicit programming to make conclusions or predictions. Reliability and risk assessment 

using machine learning has garnered significant attention from investigators and 

managers in recent years. It is possible to find significant parameters that predict failures 

as well as anticipate failures themselves using a machine learning approach. Figure 2 

illustrates a fundamental comprehension of ML implementation for downtime evaluation. 

 

 
Figure 1:  A MATLAB presentation of the utilized pattern recognition neural network 

architecture. 

 

 
Figure 2:  Flow chart of adopted research methodology 
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Optimization Algorithms 

Series of Optimization Algorithms were utilized in training the pattern recognition neural 

network models. These Algorithms include the following; Levenberg Marquardt 

Algorithm, Bayesian Regularization (BR) Algorithm, Conjugate Gradient Algorithm, 

Broyden, Fletcher, Goldfarb, and Shanno (BFGS) Quasi-Newton, and One Step Secant 

Method. 

 

Levenberg-Marquardt Algorithm (LMA) 

Levenberg-Marquardt (LMA) is employed to identify dynamic least squares solutions (Wu 

et al., 2020). For small and medium-sized data sets, LMA works well. Compared to other 

algorithms, LMA operates faster and has steady convergence. Equation (1) and (2) can be 

used to calculate the gradient (g) of the Hesian (H) matrix style, which is used in the 

process of updating the weights and biases (Chu et al., 2017). 

                                                                       𝐻 = 𝐽𝑇𝐽                                                            (1) 

                                                                       𝑔 = 𝐽𝑇𝑒                                                            (2) 

 

where J is the Jacobian matrix, e is the error vector, and T is the matrix transpose 

operator. The weights in the MLP weights optimization situation are represented by the 

x term in Equation (3). 

                                                          𝑥𝑖+1 = 𝑥𝑖 − (𝐻 − 𝜆𝐼)−1 × 𝑔                                                (3) 

 

where,  𝑥𝑖 = (𝑣11, 𝑣12, 𝑣13, 𝑣14,  … , 𝑣𝑗𝑘  ;  𝑣01, 𝑣02, 𝑣03,𝑣04,  … , 𝑣0𝑗 ;  𝑤11, 𝑤12, 𝑤13,𝑤14,  …, 

𝑣𝑗𝑘;  𝑤01, 𝑤02, 𝑤03,𝑤04,  … , 𝑤0𝑘  ).  𝜆 is the learning constant and I is the identity matrix. 

Bayesian Regularization (BR) Algorithm 

The development phase is enhanced by the Bayesian Regularization (BR) approach, whic

h optimizes the network's weights and squared errors. By using the weights and bias sta

ndard deviation, BR modifies the error performance. Equation (4) illustrates how the BR 

approach improves error efficiency by including weight and standard deviation bias 

(Baghirli, 2015). 

                                                        𝐹(𝜔) = 𝛼𝐸𝑤 + 𝛽𝐸𝐷                                                      (4) 

 

 where 𝐸𝑤  𝑎𝑛𝑑 𝐸𝐷 represent the total number of network errors and the squared 

network weight, 𝛼 𝑎𝑛𝑑 𝛽 are parameters of the goal (regularization) function. Equations 

(5) and (6) yield the following results for the 𝐸𝑤  𝑎𝑛𝑑 𝐸𝐷 functions: 

                                                 𝐸𝑤 =
1

𝑛
 ∑(𝑤𝑖

𝑛

𝑖=1

)2                                                                        (5) 
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                                                 𝐸𝐷 =
1

𝑛
 ∑(𝑡𝑖

𝑛

𝑖=1

− 𝑎𝑖)2                                                                    (6) 

 

where 𝑎𝑖  is the 𝑖𝑡ℎdata output, 𝑡𝑖 is the goal value of the 𝑡𝑡ℎ data, and n is the amount of 

inputs to the training data, along with the weights or limits for the 𝑡𝑡ℎ data. The approach 

of Bayesian Regularization artificial neural network programme is illustrated in Figure 3. 

 

Figure 3:  Concept of Bayesian 

Regularization Approach  

 

Conjugate Gradient Algorithm 

(CG) 

The conjugation direction serves 

as the foundation for the 

Conjugate Gradient Algorithm, 

which does not run line searches 

on each iteration. It is intended to 

save time through minimizing 

tedious line searches. All the 

conjugate gradient algorithms 

start by searching in the steepest 

descent direction (negative of the 

gradient) on the first iteration. 

                                                                      

𝒑𝒐 = −𝒈𝒐               

 (7) 

                                                                  

𝑿𝒊+𝟏 = 𝑿𝒊𝛼𝑖𝒑𝒊    

  (8) 

Generally speaking, the novel 

steepest descent is put together 

with the prior search route to 

identify the novel search range 

using Equation (9). 



 

 
NOVEMBER, 2024 EDITIONS. INTERNATIONAL JOURNAL OF: 

 

     TIJSRAT 

SCIENCE RESEARCH AND TECHNOLOGY VOL. 6 

111 

E-ISSN 3026-8796 
P-ISSN 3026-8095 

                                                              𝒑𝒊 = −𝒈𝒊 + 𝛽𝑖𝒑𝒊−𝟏       (9) 

The method used to calculate the constant 𝛽𝑖 distinguishes the various variants of the 

conjugate gradient technique. The process for the Fletcher-Reeves upgrade is as follows: 

                                                                   𝛽𝑖 =
𝒈𝒊

𝑻𝒈𝒊

𝒈𝒊−𝟏
𝑻 𝒈𝒊−𝟏

                                                         (10) 

Broyden, Fletcher, Goldfarb and Shanno (BFGS) Quasi-Newton 

Newton's method can be used instead of conjugate gradient methodologies for rapid 

optimization. The fundamental action in Newton's technique is as in Equation (11).  

                                                             𝑿𝒊+𝟏 = 𝑿𝒊 − 𝑨𝒊
−𝟏𝒈𝒊                                                   (11) 

where 𝐴𝑖
−1 is the performance index's Hessian matrix (second derivatives) for the present 

weight and bias settings. When computing performance derivatives concerning the 

weight and bias variables X, back-propagation is typically used. Each value is modified 

according to Equation (12)  

                                                 𝑋𝑖+1 = 𝑋𝑖 + 𝑎𝑑𝑋        (12) 

 

where, dX is the search direction. Subsequently, the search direction is computed 

according to Equation (13). 

                                                 𝑑𝑋 =
−𝐻

𝑔𝑋
       (13) 

where, gX is the slope and H is the estimated Hessian matrix. 

 

One-Step Scant Method (OSS) 

A novel method to close the gap between the quasi-Newton (secant) technique and the 

conjugate gradient algorithm is the One-Step-Secant (OSS) method. The OSS technique 

assumes that the identity matrix was the earlier Hessian at each iteration and does not 

keep the whole Hessian matrix. Equation (14) is used to change every single value. 

 

                                                 𝑋𝑖+1 = 𝑋𝑖 + 𝑎𝑑𝑋     (14) 

 

where, dX is the search direction. The opposite end of the success curve is the initial 

search orientation. Equation (15) is then used to calculate the search orientation using the 

current curve, the previous steps, and the levels.  

 

                                                𝑑𝑋 = −𝑔𝑋 + 𝐴𝑐 ∗ 𝑋−𝑠𝑡𝑒𝑝 + 𝐵𝑐 ∗ 𝑑𝑔𝑋       (15) 

 

where, gX is the slope, X-step is the variation in the weights on the earlier iteration and dgX 

is the variation in slope from the final iteration. 
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Results and Discussion 

The illustration of findings in the way of tables and figures are presented and discussed 

below. 

 
Figure 2: Comparative percentage accuracies of training, validation, testing and combined 

data for cranes 

 

Figure 2 shows the comparative percentage prediction accuracies of training, validation, 

testing and combined data for cranes. From the figure, it can be deduced that the models 

that posted highest training accuracies were PRN-LMA and PRN-CGF with accuracies of 

87.6%, followed by PRN-OSS with a training data accuracy of 87.1%. PRN-BFG had a training 

data accuracy of 83.3% while the least training data accuracy went to PRN-BR, which had 

a training data accuracy of 76.8%. The highest test data accuracy went to PRN-BFG with 

an accuracy of 91.1%, followed by PRN-LMA and PRN-CGF with 84.4% accuracies 

respectively. The least test data accuracies belonged to PRN-BR and PRN-OSS with test 

data accuracies of 75.6% and 68.9%.  

The highest validation data accuracy was for PRN-OSS with an accuracy of 91.1%, followed 

by PRN-LMA and PRN-BFG with percentage accuracies of 86.7% and 84.4% respectively. 

But the least validation accuracy went to PRN-CGF with an accuracy of 82.2%. Meanwhile, 

there was no validation accuracy for PRN-BR model since its optimization algorithm does 

not work with a validation data. However, for the combined data, the highest prediction 

accuracy went to PRN-LMA with an accuracy of 87%, followed by PRN-CGF with an overall 
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prediction accuracy of 86.3%. Next were PRN-OSS and PRN-BFG with prediction accuracies 

of 84.9% and 84.6% respectively, while PRN-BR was the least accurate, with an accuracy of 

76.6%. 

 

 
Figure 3: Comparative percentage prediction accuracies of training, validation, testing and  

                combined data for forklifts 

 

Figure 3 shows the comparative percentage prediction accuracies of training, validation, 

testing and combined data for cranes. From the figure, it can be deduced that the models 

that posted highest training accuracies were PRN-LMA and PRN-BFG with accuracies of 

94.6% and 84.2%, followed by PRN-OSS and PRN-CGF with a training data accuracies of 

82.3%. The least training data accuracy went to PRN-BR, which had a training data accuracy 

of 74.8%. The highest test data accuracy went to PRN-LMA with an accuracy of 79.1%, 

followed by PRN-OSS and PRN-BR with 76.7% accuracies respectively. The least test data 

accuracies belonged to PRN-CGF and PRN-BFG with test data accuracies of 74.4% and 

65.1%.  

The highest validation data accuracy was for PRN-LMA with an accuracy of 93%, followed 

by PRN-CGF and PRN-OSS with percentage accuracies of 86% and 79.1% respectively. But 

the least validation accuracy went to PRN-BGF with an accuracy of 76.7%. Meanwhile, 

there was no validation accuracy for PRN-BR model since its optimization algorithm does 

not work with a validation data. However, for the combined data, the highest prediction 

accuracy went to PRN-LMA with an accuracy of 92%, followed by PRN-CGF with an overall 
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prediction accuracy of 81.7%. Next were PRN-OSS and PRN-BFG with prediction accuracies 

of 81.0% and 80.3% respectively, while PRN-BR was the least accurate, with an accuracy of 

75.1%. 

 

 
Figure 4: Comparative reliability and availability predictions of various models for cranes 

Figure 4 shows the comparative reliability and availability predictions of various models 

for cranes. From the figure, it can be noticed that the model that predicted the highest 

percentage of the functional days for cranes was PRN-BR, which correctly predicted all 

the days the cranes were functional. This was followed by PRN-LMA and PRN-OSS, which 

correctly predicted 95.2% and 93.4% of all functional days of the cranes considered. The 

models that predicted the least functional days were PRN-BFG and PRN-CGF with 91.7% 

and 88.6% respectively.  

The model that correctly predicted days of failure for cranes was PRN-CGF, with a 

prediction accuracy of 78.6%, followed by PRN-BFG and PRN-LMA which correctly 

predicted 61.4% and 60% of the days of failure for cranes respectively. Next was PRN-OSS, 

which correctly predicted 57.1% of the days of failure. But PRN-BR could not correctly 

predict any of the failure days of the crane, hence it had 0%.  
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Figure 5; Comparative reliability/availability predictions of models for forklifts 

 

Figure 5 shows the comparative reliability and availability predictions of various models 

for forklifts. From the figure, it can be noticed that the model that predicted the highest 

percentage of the functional days for cranes was again PRN-BR, which correctly predicted 

all the days the cranes were functional. This was followed by PRN-LMA and PRN-OSS, 

which correctly predicted 96.3% and 91.7% of all functional days of the forklift considered. 

The models that predicted the least functional days were PRN-BFG and PRN-CGF with 

89.9% and 82.5% respectively.  

The models that correctly predicted days of failure for forklift were PRN-LMA and PRN-

CGF, with prediction accuracies of 79.2% each, followed by PRN-BFG, which correctly 

predicted 51.4% of the days of failure for forklift. Next was PRN-OSS, which correctly 

predicted 48.6% of the days of failure. But PRN-BR could not correctly predict any of the 

failure days of the crane, hence it had 0%.  

 

Conclusion 

From the research and findings obtained, the following conclusions could be drawn: 

a. Artificial neural network-based models were developed for assessing the 

reliability of both cranes and forklift.  

b. Insights gained from the results showed that the PRN-LMA models for both crane 

and forklifts were found to give the highest prediction accuracy.  
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c. On the other hand, the Bayesian regularization models (PRN-BR) gave the least 

prediction accuracy for both cranes and forklifts.  

d. Meanwhile, the PRN-CGF model, followed by the PRN-LMA model were able to 

predict the highest number of failure days for cranes, while both models also gave 

the highest prediction accuracy for failure days.  

e. Despite the fact that the Bayesian regularization models gave the highest 

functional days predictions, yet they could not correctly predict any of the failure 

days. This explains why they ranked low in terms of prediction accuracy.  

 

Recommendations 

From the observation and results obtained, it is therefore recommended that: 

a. The Federal Government of Nigeria and other larger companies should adopt the 

developed models to optimize the cost of purchasing sophisticated software.  

b. For more accurate results, further study should be conducted combining artificial 

neural networks and machine learning to assess the reliability of other haulage or 

lifting machinery. 
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Appendix 
Table 1 Comparative percentage prediction accuracies of training, validation, testing and combined data for 
cranes 

Model  Data Percentage Accuracy (%) 

PRN-LMA Training 87.6 

Validation 86.7 

Testing 84.4 

Total 87.0 

PRN-BR Training 76.8 

Validation - 

Testing 75.6 

Total 76.6 

PRN-CGF Training 87.6 

Validation 82.2 

Total 84.4 

Testing 86.3 

PRN-BFG Training 83.3 

Validation 84.4 

Testing 91.1 

Total 84.6 

PRN-OSS Training 87.1 

Validation 91.1 

Testing 68.9 

Total 84.9 

 
Table 2 Comparative percentage prediction accuracies of training, validation, testing and combined data for 
forklifts 

Model  Data Percentage Accuracy (%) 

PRN-LMA Training 94.6 

Validation 93.0 

Testing 79.1 

Total 92.0 

PRN-BR Training 74.8 

Validation - 

Testing 76.7 

Total 75.1 

PRN-CGF Training 82.3 

Validation 86.0 
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Testing  74.4 

Total 81.7 

PRN-BFG Training 84.2 

Validation 76.7 

Testing 65.1 

Total 80.3 

PRN-OSS Training 82.3 

Validation 79.1 

Testing 76.7 

Total 81.0 

 
Table 3 Comparative reliability/availability predictions of models for cranes 

Model  Predicted status Percentage Accuracy (%) 

PRN-LMA Functional 95.2 

 Failure 60.0 

PRN-BR Functional 100 

 Failure 0 

PRN-CGF Functional 88.6 

 Failure 78.6 

PRN-BFG Functional 91.7 

 Failure 61.4 

PRN-OSS Functional 93.4 

 Failure 57.1 

 
Table 4 Comparative reliability/availability predictions of models for forklifts 

Model  Predicted status Percentage Accuracy (%) 

PRN-LMA Functional 96.3 

 Failure 79.2 

PRN-BR Functional 100 

 Failure 0 

PRN-CGF Functional 82.5 

 Failure 79.2 

PRN-BFG Functional 89.9 

 Failure 51.4 

PRN-OSS Functional 91.7 

 Failure 48.6 

 
Table 5 Classification bias for various models developed for cranes  

Model  Classification  Bias (%) 

PRN-LMA True positive 88.6 

 True negative 79.2 

PRN-BR True positive 76.6 

 True negative 0 

PRN-CGF True positive 93.1 

 True negative 67.9 

PRN-BFG True positive 88.6 

 True negative 69.4 

PRN-OSS True positive 87.7 

 True negative 72.7 
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Table 6 Classification bias for various models developed for forklifts  

Model  Classification Bias (%) 

PRN-LMA True positive 93.3 

 True negative 87.7 

PRN-BR True positive 75.1 

 True negative 0 

PRN-CGF True positive 92.3 

 True negative 60.0 

PRN-BFG True positive 84.8 

 True negative 62.7 

PRN-OSS True positive 84.3 

 True negative 66.0 

 

  


