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INTRODUCTION 
n recent decades, the burden of non-communicable 

diseases such as diabetes mellitus has increased 

significantly across the globe, driven by sedentary 

lifestyles, urbanization, and poor dietary habits. According to 

the International Diabetes Federation (IDF), more than 537 

million adults were living with diabetes in 2021, and this number 

is projected to rise to 783 million by 2045 [1]. One of the most 

devastating complications of diabetes is Diabetic Retinopathy 

(DR), a microvascular disorder that affects the blood vessels in 

the retina and remains a leading cause of irreversible vision 

impairment and blindness among the working-age population 

[2]. DR progresses silently and often asymptomatically in its 

early stages, which makes timely screening and detection vital 

to preserving visual function and reducing the risk of blindness. 
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ABSTRACT 
Diabetic 

Retinopathy (DR) is 

a progressive eye 

disease and a 

leading cause of 

blindness among 

individuals with 

diabetes. Early 

detection is critical 

for preventing 

irreversible vision 

loss. In this paper, 

we propose an 

automated DR 

detection system 

using deep learning 

and ensemble 

methods to 

improve 

classification 

accuracy across five 

DR severity levels. 

The system was 

trained on the 

APTOS 2019 

Blindness 

Detection dataset  
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Traditionally, DR diagnosis involves manual assessment of retinal fundus images by 

trained ophthalmologists or retina specialists who visually inspect the retina for clinical 

signs such as microaneurysms, hemorrhages, exudates, and neovascularization. While 

effective, this manual process is time-consuming, prone to human error, and highly 

dependent on the availability and expertise of healthcare professionals. In regions with 

limited access to ophthalmic care, particularly in low-income or rural communities, these 

limitations contribute to underdiagnosis and delayed treatment of DR, worsening patient 

outcomes. As such, there is a growing demand for automated DR detection systems that 

are accurate, scalable, and capable of supporting mass screening initiatives. 

The advancement of artificial intelligence (AI) and deep learning (DL) has revolutionized 

medical image analysis by enabling machines to learn complex patterns from large-scale 

datasets without explicit programming. In particular, Convolutional Neural Networks 

(CNNs) have demonstrated exceptional performance in image classification tasks, 

including disease detection from medical imaging modalities such as X-rays, MRIs, CT 

scans, and retinal fundus images [3]. CNNs are capable of automatically extracting high-

level abstract features from raw input images, allowing for end-to-end learning of 

classification pipelines without relying on handcrafted features. Several studies have 

validated the effectiveness of CNN-based models in DR detection, often achieving 

performance levels comparable to human experts [4–6]. 

comprising 3,662 retinal fundus images. Three convolutional neural network (CNN) 

models-ResNet18, ResNet50, and EfficientNetB3-were implemented individually and 

then combined using ensemble techniques: majority voting, weighted voting, and 

stacked ensemble with a random forest meta-classifier. Image preprocessing 

techniques such as LAB color conversion, CLAHE, denoising, and data augmentation 

were used to enhance diagnostic features. The ensemble models significantly 

outperformed the individual CNNs, with the stacked ensemble achieving the best 

results: 85.27% accuracy, 0.933 ROC AUC, and 0.7352 PR AUC. The system's 

interpretability was improved using Grad-CAM, providing visual heatmaps of model 

decision regions. These results demonstrate that ensemble learning, coupled with 

interpretable AI, offers a robust and clinically relevant approach to DR detection. 

 

Keywords: diabetic retinopathy, deep learning, convolutional neural networks, 

ensemble learning, image classification, medical imaging, interpretability, Grad-CAM 
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Transfer learning has emerged as a pivotal technique in the training of CNNs for medical 

imaging, particularly when datasets are relatively small. It involves leveraging knowledge 

from pre-trained models trained on large general-purpose datasets such as ImageNet, and 

fine-tuning them on domain-specific datasets. This approach significantly reduces the 

computational resources and training time required while maintaining high classification 

accuracy. Notable CNN architectures such as ResNet18, ResNet50, VGG16, InceptionV3, 

and EfficientNet have been successfully employed in various DR classification tasks with 

commendable results [7–9]. 

Despite the progress, deep learning models often suffer from issues such as overfitting, 

high variance, and instability, especially when trained on imbalanced datasets with 

variable image quality. These shortcomings have motivated the adoption of ensemble 

learning techniques, which aim to improve model performance by combining the outputs 

of multiple classifiers. Ensemble methods such as majority voting, weighted voting, 

bagging, and stacking enable the aggregation of diverse model predictions, thereby 

reducing generalization error and improving overall accuracy and reliability [10–12]. 

Recent studies have shown that ensemble models outperform individual classifiers in DR 

detection, especially in multiclass classification scenarios where intra-class variability is 

high. 

Another crucial aspect of deploying AI systems in the medical field is interpretability. 

Clinical professionals are often hesitant to adopt black-box models without 

understanding the rationale behind the predictions. To bridge this gap, visualization 

techniques such as Gradient-weighted Class Activation Mapping (Grad-CAM) have been 

employed to generate heatmaps that highlight important regions in an image 

contributing to a model’s decision. These explainability tools increase trust in AI systems 

and provide valuable insights to clinicians, making them essential for real-world 

implementation [13,14]. 

In this study, we propose an automated DR detection framework utilizing deep learning 

and ensemble learning techniques. Specifically, we compare the performance of three 

widely adopted CNN architectures-ResNet18, ResNet50, and EfficientNetB3-on the APTOS 

2019 Blindness Detection dataset. Each model is trained independently, followed by the 

implementation of three ensemble strategies: majority voting, weighted voting, and 

stacked ensemble using a random forest meta-classifier. The dataset is preprocessed 

using advanced image enhancement techniques including contrast-limited adaptive 

histogram equalization (CLAHE), LAB color space conversion, denoising, resizing, and 

augmentation. Furthermore, Grad-CAM is employed to provide model interpretability by 

visualizing class-discriminative regions in the retinal images. 
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The objectives of this research are threefold: (1) to evaluate the individual performance 

of selected CNN architectures in DR classification; (2) to assess the effectiveness of 

ensemble methods in improving diagnostic accuracy and robustness; and (3) to enhance 

clinical applicability through the use of interpretable visual explanations.  

 

Related Works 

The detection of Diabetic Retinopathy (DR) has been a primary area of interest within 

medical image analysis, particularly due to the disease’s widespread prevalence and the 

risk of irreversible vision loss if not diagnosed in its early stages. In recent years, deep 

learning (DL) methods, especially Convolutional Neural Networks (CNNs), have gained 

considerable attention as powerful tools for automating the classification of retinal 

fundus images. Researchers have explored several CNN architectures and training 

methodologies, which have yielded promising outcomes across multiple DR detection 

challenges. 

Gulshan et al. [1] conducted a pioneering study that implemented a deep CNN to detect 

referable DR in retinal fundus images. Their model achieved sensitivity and specificity 

values comparable to those of ophthalmologists, establishing CNNs as viable tools for 

mass DR screening. Similarly, Pratt et al. [2] employed a custom CNN consisting of five 

convolutional layers and three fully connected layers, demonstrating high classification 

accuracy on a DR dataset. The architectural variations of CNNs have since been widely 

explored to optimize accuracy, precision, and computational efficiency. 

Transfer learning has also become a standard approach in DR detection research. Zhang 

et al. [3] fine-tuned VGG16 and InceptionV3 on the Kaggle DR dataset, demonstrating that 

pre-trained models significantly reduce training time and improve generalization. Zuluaga 

et al. [4] explored the use of ResNet and EfficientNet architectures on the APTOS and 

Messidor datasets, achieving enhanced performance in distinguishing between different 

DR severity levels. These findings confirm the role of transfer learning in facilitating 

effective model training on limited medical datasets. 

Image preprocessing has consistently been shown to play a vital role in improving DR 

classification accuracy. Common preprocessing steps include LAB color space conversion, 

Gaussian filtering, contrast-limited adaptive histogram equalization (CLAHE), and noise 

reduction. Rajalakshmi et al. [5] reported substantial improvements in lesion visibility and 

classification accuracy after applying CLAHE and Gaussian blurring techniques to their 

retinal images. Moreover, data augmentation strategies such as rotation, flipping, and 

brightness adjustments have been frequently adopted to address class imbalance and 

enhance model robustness. 
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Several studies have focused on the use of ensemble learning strategies to improve 

diagnostic reliability. Gonzalez et al. [6] developed an ensemble combining DenseNet, 

InceptionV3, and ResNet classifiers through majority voting. This configuration achieved 

higher stability and accuracy when compared to individual models. Similarly, Islam et al. 

[7] implemented an ensemble of MobileNetV2 and ResNet50 using weighted voting, 

reporting improved sensitivity, specificity, and reduced false positive rates. 

Stacked ensembles, a more complex form of ensembling, have also been explored. These 

models involve training multiple base CNNs and combining their predictions through a 

meta-learner such as a Random Forest or Gradient Boosting classifier. Zhang et al. [8] 

demonstrated that stacked ensembles outperform conventional ensemble techniques by 

capturing deeper relationships among model predictions. Such frameworks not only 

improve predictive performance but also add flexibility in integrating heterogeneous 

architectures. 

Explainable Artificial Intelligence (XAI) has also become increasingly relevant in DR 

research, particularly through methods like Gradient-weighted Class Activation Mapping 

(Grad-CAM). Grad-CAM allows visualization of key image regions that influence the 

model’s prediction, thus improving clinical trust and model transparency. Selvaraju et al. 

[9] introduced Grad-CAM as a general XAI tool for CNN-based models, while Bhatia et al. 

[10] and Prabhu et al. [11] successfully implemented it in DR detection pipelines, providing 

meaningful insights into model decision pathways. 

Despite progress, DR detection research continues to face several challenges. These 

include high inter-class similarity, poor visibility in low-quality images, and skewed class 

distributions that hinder accurate classification of underrepresented DR stages. Several 

studies have proposed solutions such as synthetic data generation, focal loss functions, 

and class balancing techniques. Nevertheless, the need for comprehensive ensemble 

evaluations across varied CNN architectures remains largely unexplored. 

To address this gap, the present study evaluates three popular CNN architectures-

ResNet18, ResNet50, and EfficientNetB3-on the APTOS 2019 Blindness Detection dataset. 

Each model is first trained independently, then combined using three ensemble 

strategies: majority voting, weighted voting, and stacked ensembling with a Random 

Forest meta-learner. Standardized preprocessing is applied across all experiments, and 

Grad-CAM is used to provide interpretability to the classification outcomes. This 

comparative study aims to deliver a holistic view of CNN and ensemble performance in DR 

detection, offering valuable guidance for future work in AI-assisted ophthalmology. 
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Methodology 

The proposed system is designed to detect and classify the severity of Diabetic 

Retinopathy (DR) in retinal fundus images using a deep learning-based approach. The 

system framework integrates three convolutional neural network (CNN) architectures-

ResNet18, ResNet50, and EfficientNetB3-trained individually and subsequently combined 

using multiple ensemble techniques. The goal is to improve diagnostic accuracy, minimize 

misclassification of critical DR stages, and enable model interpretability through 

visualization tools. This section outlines the methods used for data preprocessing, model 

training, ensemble construction, and evaluation, following a structured and reproducible 

experimental pipeline. 

The architecture of the system is divided into five core stages: data acquisition, image 

preprocessing, individual model training, ensemble generation, and interpretability 

integration. Figure 1 illustrates the general workflow of the system, showing how data 

flows from the raw image dataset to final classification through both individual and 

ensemble modeling approaches. 

The dataset used for training and evaluation is the APTOS 2019 Blindness Detection 

dataset, sourced from a Kaggle-hosted competition by the Asia Pacific Tele-

Ophthalmology Society (APTOS). The dataset consists of 3,662 high-resolution retinal 

fundus images labeled according to five DR severity levels [15]: Class 0 (No DR), Class 1 

(Mild), Class 2 (Moderate), Class 3 (Severe), and Class 4 (Proliferative DR). Each image is 

in JPEG format with varying resolution and lighting conditions. Due to differences in 

illumination, contrast, and image quality across the dataset, significant preprocessing 

steps were required before model training. Furthermore, the dataset suffers from class 

imbalance, with a disproportionate number of samples in Class 0, while Classes 3 and 4 

are underrepresented. To mitigate the effect of imbalance, a combination of 

oversampling and augmentation was applied. 

The primary objective of this study is to comparatively evaluate the classification 

performance of three CNN models and three ensemble strategies in detecting and 

differentiating DR stages. Specifically, the research aims to: (1) Train and evaluate 

individual CNN architectures (ResNet18, ResNet50, EfficientNetB3) on preprocessed 

retinal images; (2) Construct ensemble classifiers using majority voting, weighted voting, 

and stacking with a meta-learner; (3) Use Grad-CAM for model interpretability, generating 

heatmaps of image regions influencing the model’s decision; and (4) Compare the 

performance of all models using standard classification metrics. 

The choice of CNN architectures is motivated by their established effectiveness in medical 

image classification. ResNet18 is a lightweight deep residual network with fewer 
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parameters, suitable for rapid deployment in resource-constrained environments. 

ResNet50, a deeper variant, allows more complex feature learning, enhancing 

performance on subtle DR cases. EfficientNetB3 is a state-of-the-art model known for its 

optimized accuracy-to-parameter ratio, making it ideal for applications requiring both 

performance and scalability. These architectures were chosen to allow comparative 

evaluation across different model sizes, depths, and design philosophies. 

Before training the models, extensive image preprocessing was applied to standardize 

and enhance the retinal images. The preprocessing pipeline included: Color space 

conversion from RGB to LAB to separate luminance from chromaticity; CLAHE applied to 

the L-channel to enhance contrast and detail visibility [16]; Gaussian filtering for noise 

reduction; resizing all images to 224×224 pixels to match CNN input requirements; 

normalization of pixel values to [0, 1]; and extensive data augmentation including 

rotation, flipping, and brightness variation to combat class imbalance and promote 

generalization. 

The dataset was split into 80% training and 20% validation sets. Stratified sampling ensured 

balanced class distribution across both sets. No separate test set was used due to the 

limited dataset size, and performance was evaluated using the validation set. All training 

and validation were conducted on Kaggle notebooks using GPU-accelerated runtime 

(NVIDIA Tesla T4), constrained by Kaggle's 30-hour weekly GPU quota. 

Model training was carried out using the fastai library, which is built on PyTorch and 

provides high-level abstractions for rapid experimentation. All three CNN architectures 

were implemented using fastai’s transfer learning pipeline [17]. Each model was initialized 

with ImageNet pre-trained weights, with the final classification layers replaced to match 

the five DR severity classes. Training was done using the Adam optimizer with 

discriminative learning rates, and categorical cross-entropy as the loss function. A batch 

size of 32 was used. Instead of training for a fixed number of epochs, training was 

conducted dynamically-each model was monitored for validation performance, and 

training was stopped early once performance plateaued [18]. In practice, none of the 

models were trained for more than 20 epochs, as early stopping consistently occurred 

beforehand due to the performance stabilizing. 

The next subsection discusses the process of training individual CNN architectures and 

evaluating their performance using standard metrics. 
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Individual CNN Model 

Training 

In this study, three well-

established convolutional 

neural network (CNN) 

architectures-ResNet18, 

ResNet50, and EfficientNetB3-

were selected and trained 

individually on the 

preprocessed APTOS 2019 

Blindness Detection dataset. 

These models were chosen 

due to their proven 

effectiveness in image 

classification tasks and their 

varying levels of architectural 

complexity and parameter 

counts. This selection allows 

for a comparative evaluation 

of lightweight, mid-weight, 

and advanced CNN structures 

in the context of diabetic 

retinopathy (DR) 

classification. 

All models were trained using 

the fastai library, built on top 

of PyTorch, within the Kaggle 

notebook environment using 

NVIDIA Tesla T4 GPUs. Fastai's 

high-level API provided 

efficient model initialization, 

data loading, transfer learning 

utilities, and training callbacks 

including early stopping and 

learning rate scheduling. Each 
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model was initialized with ImageNet pre-trained weights, and only the final classification 

layers were re-initialized and trained to adapt to the five DR severity classes. 

 

ResNet18 

ResNet18 is a relatively shallow residual network with 18 layers, characterized by its use 

of skip connections to prevent vanishing gradient problems. Its relatively low number of 

parameters (~11.7 million) makes it a good candidate for rapid training and deployment in 

environments with limited computational power. In this implementation, the final fully 

connected layer was replaced with a linear layer containing five output nodes, followed 

by a softmax activation function. 

Due to its shallow depth, ResNet18 converged rapidly during training and demonstrated 

decent baseline performance. The training was conducted with a batch size of 32 using 

the Adam optimizer with default β parameters and a learning rate range test to select 

optimal learning rates. On average, ResNet18 models reached peak performance 

between 8–12 epochs, after which early stopping was triggered based on validation loss 

plateau. 

 

ResNet50 

ResNet50 is a deeper and more expressive architecture, with 50 layers and approximately 

25 million parameters. Its depth enables it to learn more complex hierarchical features, 

which is particularly useful for distinguishing between DR stages with subtle visual 

differences. Like ResNet18, the final layer was modified to suit the five-class DR problem. 

ResNet50 required slightly more training time and computational resources compared to 

ResNet18. However, it demonstrated improved performance in detecting mid-stage DR 

classes (Classes 2 and 3), which are commonly misclassified in simpler models. Fastai’s 

differential learning rate technique was applied, assigning lower learning rates to the 

earlier layers and higher rates to the newly initialized layers. Most ResNet50 training runs 

converged optimally between 10–15 epochs. 

 

EfficientNetB3 

EfficientNetB3 is a more recent architecture designed with neural architecture search 

principles to optimize performance-to-complexity tradeoffs. It balances depth, width, and 

resolution using compound scaling. EfficientNetB3 contains roughly 12 million parameters 

but achieves higher accuracy per parameter compared to traditional models. Due to its 

internal squeeze-and-excitation blocks and swish activations, it tends to generalize well 

on medical datasets. 
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EfficientNetB3 was implemented using the cnn_learner function from fastai with a 

custom architecture import. Pre-trained ImageNet weights were loaded, and the classifier 

head was replaced with a batch-normalized linear block leading to a five-class softmax 

output. To avoid overfitting, dropout was enabled in the final layers. EfficientNetB3 

showed the most promising results in early experimentation, particularly in detecting 

minority class instances (e.g., severe and proliferative DR). However, it also required more 

careful learning rate tuning due to its sensitivity to parameter updates. 

Training was again guided by fastai’s learning rate finder. In practice, the learning rate was 

set between 1e-4 and 3e-4, with one-cycle learning rate scheduling used to improve 

convergence. On average, EfficientNetB3 reached its best performance within 6–10 

epochs, with validation loss decreasing steadily until early stopping was activated. 

 

Training Strategy 

Across all models, the same training pipeline was followed for consistency and fair 

comparison: 

(i) Loss Function: Categorical Cross-Entropy 

(ii) Optimizer: Adam 

(iii) Batch Size: 32 

(iv) Metric Monitored: Validation Accuracy and Validation Loss 

(v) Early Stopping: Applied with patience of 3 epochs 

(vi) Learning Rate: Selected using fastai's built-in learning rate finder 

(vii) Augmentation: Enabled during training (rotation, flipping, brightness) 

 

Each model was trained on 80% of the dataset, with the remaining 20% used for validation. 

Since the APTOS dataset is inherently imbalanced, data augmentation helped expose the 

models to underrepresented classes more frequently. No fixed number of epochs was 

predefined; instead, training continued until the model performance stabilized or began 

to degrade, ensuring each model received adequate training without unnecessary 

overfitting. 

After training, the individual model outputs (class probabilities) were stored and later 

used in ensemble constructions. The confusion matrix, class-wise accuracy, and ROC 

curves were generated for each model to support comparative analysis 

 

Ensemble Techniques 

Ensemble learning has become an essential technique in deep learning research and 

applications [19], particularly in scenarios where individual models exhibit limitations in 
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generalization or robustness. The fundamental concept behind ensemble learning is that 

combining the outputs of multiple models can lead to improved predictive performance 

compared to relying on a single model. This is achieved by leveraging the diversity in the 

learned representations of each model, effectively reducing variance and error 

propagation. In the context of diabetic retinopathy (DR) classification, ensemble methods 

are particularly valuable due to the complexity and variability of retinal fundus images, 

which can lead to inconsistent performance across different CNN architectures. 

This study implements and evaluates three distinct ensemble strategies: majority voting, 

weighted voting, and stacked generalization (stacking). Each method aggregates the 

outputs of three independently trained CNN architectures-ResNet18, ResNet50, and 

EfficientNetB3-to generate a single prediction per input image. The goal of employing 

multiple ensemble techniques was not only to boost performance but also to compare 

their strengths and limitations in handling the five-class classification task of DR severity. 

 

Majority Voting Ensemble 

The majority voting strategy is a non-parametric and intuitive ensemble method. Each of 

the three base models independently predicts a class label for a given image. The final 

predicted label is determined by a simple vote-counting process: the class that receives 

the most votes is selected as the ensemble’s prediction. In cases where all three models 

predict different classes (i.e., a tie), a predefined priority order was applied based on class 

frequency observed in the training set, favoring the more prevalent classes to mitigate 

misclassification of common conditions. 

Despite its simplicity, majority voting can be effective when the individual models make 

different types of errors or when they exhibit complementary strengths. In this study, 

majority voting provided a significant improvement in stability, particularly for commonly 

occurring classes such as “No DR” (Class 0) and “Moderate DR” (Class 2). However, the 

method does not account for model confidence or individual performance variance, 

which may reduce its effectiveness in classifying rarer DR stages such as “Severe” (Class 

3) or “Proliferative DR” (Class 4). Since this method assigns equal weight to all models 

regardless of their validation accuracy, its utility is mainly tied to the presence of diversity 

among the base classifiers. 

 

Weighted Voting Ensemble 

To address the limitation of equal weighting in majority voting, the weighted voting 

ensemble approach was implemented. This method improves upon majority voting by 

assigning a confidence-based weight to each model’s prediction [20]. These weights were 



 

 
AUGUST, 2025 EDITIONS. INTERNATIONAL JOURNAL OF: 

 

     TIJSRAT 

SCIENCE RESEARCH AND TECHNOLOGY VOL. 9 

210 

E-ISSN 3026-8095 
P-ISSN 3027-1991 

calculated based on each model’s overall validation accuracy, allowing models with higher 

predictive performance to exert greater influence on the final decision. Specifically, the 

softmax output vectors from each model were multiplied by their respective weights, and 

the resulting vectors were summed element-wise. The final predicted class was selected 

based on the index with the highest aggregated score. 

The weight assignment was proportional to the validation accuracy observed during 

individual model evaluation. For instance, EfficientNetB3, which demonstrated the best 

accuracy and F1-score on the validation set, received the highest weight, followed by 

ResNet50 and ResNet18. This strategy allowed the ensemble to capitalize on the 

strengths of stronger models while still retaining the diversity of the ensemble structure. 

In practice, the weighted voting ensemble showed noticeable improvements in minority 

class sensitivity and macro-averaged F1-score, especially for Class 3 and Class 4 

predictions, where the base models individually struggled due to limited training samples. 

Another advantage of weighted voting lies in its implementation simplicity and 

computational efficiency, as it does not require additional model training. The weighted 

aggregation of probabilities can be computed in a vectorized form during inference, 

making this method suitable for real-time or resource-constrained deployment 

environments. 

 

Stacked Generalization (Stacking) 

Stacking, also known as stacked generalization, is a more sophisticated ensemble 

technique that involves training a second-level model (meta-learner) to combine the 

predictions of base models. Unlike majority and weighted voting, stacking treats the 

outputs of the base models as features for a new classifier, which learns to correct the 

base models’ errors by identifying correlations and dependencies between their 

predictions. 

In this study, stacking was implemented using the softmax probability outputs from 

ResNet18, ResNet50, and EfficientNetB3. For each input image, the predicted 

probabilities from all three models (each outputting a 5-element vector) were 

concatenated to form a single 15-dimensional feature vector. These feature vectors, along 

with the corresponding ground truth labels, were then used to train a Random Forest 

classifier as the meta-learner [21]. The Random Forest algorithm was chosen for its 

robustness, interpretability, and ability to handle small input dimensionality while 

capturing non-linear decision boundaries. 

The meta-classifier was trained using the validation set predictions from the base models, 

with 5-fold cross-validation applied to reduce overfitting risk. During training, 
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hyperparameters such as the number of trees (set to 100), maximum tree depth, and 

minimum samples per leaf were tuned using grid search. To ensure fairness and avoid data 

leakage, the validation set used for training the meta-learner was kept separate from the 

training data of the base CNNs. 

Stacking demonstrated the highest overall performance across all evaluated metrics. It 

consistently outperformed both majority and weighted voting methods in terms of 

accuracy, macro-F1, and balanced accuracy. Additionally, the stacking approach showed 

better generalization on underrepresented classes due to the meta-learner’s ability to 

exploit inter-model agreement patterns and inconsistencies. However, the increased 

complexity of this method introduces computational overhead and latency during 

inference, as it requires both base model predictions and an additional inference step 

through the meta-classifier. 

 

Implementation Considerations and Evaluation Consistency 

To ensure a fair and reproducible comparison of ensemble methods, all predictions used 

in the ensemble calculations were extracted and stored during the initial evaluation of 

each base CNN model. This ensured that the same validation samples and model outputs 

were used across all ensemble experiments, eliminating variability due to randomness or 

batch effects. Furthermore, class distributions in the validation set were preserved using 

stratified sampling. 

The ensemble methods were implemented using Python with support from libraries 

including NumPy, Scikit-learn, and Pandas. All performance metrics were computed 

numerically, including overall accuracy, class-wise precision, recall, F1-score, and area 

under the ROC curve (AUC). Confusion matrices were also generated for visual 

assessment of true and false classifications across classes, though they were not used as 

quantitative evaluation metrics. Precision-recall curves further highlighted the 

performance of each ensemble, particularly the enhanced detection of minority classes 

under the weighted and stacked configurations. 

 

Comparative Insights 

The comparative analysis of the three ensemble methods revealed a spectrum of trade-

offs between simplicity, performance, and computational cost. Majority voting offered 

the most lightweight solution with fast inference and no parameter tuning but struggled 

in low-representation class detection. Weighted voting introduced confidence-driven 

balancing and showed improvements in F1-score for challenging classes. Stacking, 

although the most resource-intensive, delivered the best overall classification 
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performance and interpretability through feature importance analysis within the Random 

Forest. 

This comparative evaluation highlights that the optimal ensemble method depends on 

the deployment context. For clinical applications requiring high accuracy and reliability-

especially in distinguishing advanced DR stages-stacking emerges as the most effective 

technique. In contrast, for lightweight deployment in mobile or edge devices, majority or 

weighted voting may offer sufficient performance with lower overhead. 

The next section presents the evaluation metrics used to benchmark all models and 

ensemble strategies. 

 

Evaluation Metrics 

To evaluate the performance of the diabetic retinopathy (DR) classification models, 

several evaluation metrics were used. These metrics provide a balanced view of the 

models’ effectiveness, especially in the context of a multi-class, imbalanced dataset. 

All models and ensemble strategies were evaluated using the same 80/20 train-validation 

split from the APTOS 2019 dataset. Metrics were computed using Python libraries 

including Scikit-learn, NumPy, and fastai.metrics. 

 

Accuracy 

Accuracy is the proportion of correctly classified predictions out of the total number of 

predictions. 

Formula: 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (1) 

 

Precision 

 

Precision measures how many of the positively predicted cases were actually correct. 

Formula:  

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (2) 

 

It was calculated for each class and averaged (macro precision) to ensure equal 

importance was given to all DR severity levels. 

 

Recall (Sensitivity) 

Recall measures how many actual positive cases were correctly identified. 

Formula:  
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Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (3) 

 

This is important in DR detection to ensure cases are not missed, especially in higher-risk 

stages. 

 

F1-Score 

The F1-score is the harmonic mean of precision and recall, balancing both metrics. 

Formula:  

𝐹1 = 2 ×
Precision×Recall

Precision+Recall
    (4) 

Macro F1-score was used to fairly evaluate performance across all classes. 

𝐹1_𝑚𝑎𝑐𝑟𝑜 =
1

𝑁
∑ 𝐹1

(𝑖)𝑁
𝑖=1    (5) 

 

Confusion Matrix 

A confusion matrix was generated for each model and ensemble to visualize how 

predictions were distributed across the five DR classes. Although not a numerical metric, 

it provided insight into which classes were commonly misclassified (e.g., Class 1 vs Class 

2). 

 

ROC Curve and AUC (Area Under Curve) 

The ROC curve shows the trade-off between true positive rate and false positive rate at 

various thresholds. AUC scores closer to 1.0 indicate stronger classification performance. 

One-vs-rest ROC curves were plotted for each class, and the macro-AUC was computed. 

 

Precision-Recall Curve (PR Curve) 

This curve plots precision against recall for each class. It was especially helpful in 

evaluating performance on imbalanced classes like Class 3 and Class 4. The weighted and 

stacking ensemble methods achieved better balance on these curves. 

No single metric can describe model performance adequately. Accuracy alone can be 

misleading when class distributions are imbalanced. Macro-averaged precision, recall, and 

F1-score were essential to fairly assess models across all DR stages[22]. 

 

Interpretability with GRAD-CAM 

In the medical domain, particularly in tasks involving automated diagnosis such as diabetic 

retinopathy (DR) detection, the trust and adoption of deep learning models are heavily 

influenced by their ability to explain their predictions. Unlike traditional rule-based 
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systems, convolutional neural networks (CNNs) are often described as “black-box” 

models due to their complex internal representations. As a result, there is a critical need 

for interpretability tools that help visualize what the model is learning and identify which 

regions of the input image influenced its decisions. 

To address this, the Gradient-weighted Class Activation Mapping (Grad-CAM) technique 

was employed in this study. Grad-CAM is a visualization method that produces heatmaps 

highlighting the regions in an input image that are most important for the model’s 

prediction [23]. These visualizations serve two primary purposes: (1) validating that the 

model is focusing on relevant anatomical features (e.g., microaneurysms, hemorrhages), 

and (2) detecting failure modes where the model attends to irrelevant or misleading 

areas. 

 

How Grad-CAM Works 

Grad-CAM operates by utilizing the gradients of a target class flowing into the final 

convolutional layer of a CNN. These gradients are averaged to obtain importance weights, 

which are then multiplied by the feature maps of the convolutional layer. The result is a 

class-specific localization map, which is upsampled and overlaid on the original image to 

indicate the model’s focus. 

Mathematically, for a given class label ccc, the Grad-CAM map 𝐿Grad-CAM
𝑐  is computed as: 

 

𝐿Grad-CAM
𝑐 = ReLU(∑ 𝛼𝑘

𝑐𝐴𝑘𝑘 )   (6) 

 

Where: 

(i) 𝐴𝑘represents the k-th feature map of the selected convolutional layer, 

(ii) 𝛼𝑘
𝑐  is the importance weight computed via global average pooling of the gradient 

of class ccc with respect to feature map 𝐴𝑘, 

(iii) ReLU ensures only positive influences are visualized. 

 

This results in a coarse heatmap that can be interpreted alongside the original retinal 

fundus image. 

 

Implementation in This Study 

Grad-CAM was applied to the three best-performing models from the individual training 

phase-ResNet50, EfficientNetB3, and the stacked ensemble (via its base model outputs). 

For implementation, the GradCAM module from the torchcam library was used, allowing 

compatibility with fastai and PyTorch models. Visualizations were generated post-training 
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by passing validation set samples through the trained model and capturing Grad-CAM 

overlays for the predicted class. 

All Grad-CAM maps were produced using the final convolutional block before the global 

average pooling layer, ensuring high-level semantic features were captured. The maps 

were normalized and overlaid onto the original fundus images using OpenCV and 

Matplotlib for presentation. 

 

Observations and Findings 

The Grad-CAM visualizations revealed several key insights: 

1. Correct Predictions with Relevant Focus: For correctly classified images, 

particularly in Classes 2–4, the heatmaps often focused on diagnostically relevant 

features such as exudates, retinal hemorrhages, or microaneurysms. This 

alignment with clinical pathology confirms that the model was not just 

memorizing patterns but learning meaningful visual features associated with DR 

progression. 

2. Class Confusion Cases: In images misclassified between adjacent severity levels 

(e.g., Class 1 labeled as Class 2), Grad-CAM maps still showed activation in relevant 

retinal regions, but the model appeared to over- or under-weight certain lesion 

patterns. This suggests that class overlap in visual symptoms contributes to 

confusion, rather than the model focusing on irrelevant image areas [26]. 

3. Failure Cases with Irrelevant Focus: In a few low-confidence predictions, the 

heatmaps highlighted peripheral, non-retinal areas or regions with poor contrast 

or occlusion. These instances often occurred in images with low brightness, blur, 

or imaging artifacts, which likely misled the feature extraction layers. Such 

findings emphasize the importance of preprocessing and dataset quality in model 

reliability. 

4. Model Comparison: EfficientNetB3 and the stacked ensemble produced the most 

clinically reasonable Grad-CAM maps, likely due to their stronger learning capacity 

and better generalization. ResNet18 occasionally focused on less distinct regions, 

aligning with its relatively lower performance in the evaluation metrics. 

 

Clinical Implications 

The ability to visualize model decisions not only enhances trust among clinicians but also 

supports regulatory transparency for AI-driven diagnostics. Grad-CAM provides a 

mechanism to audit predictions post hoc and can serve as a supporting tool in human-AI 
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collaboration workflows. For example, a model could flag an image as “Severe DR” and 

display the corresponding heatmap to a clinician for confirmation. 

Furthermore, interpretability aids in dataset development by exposing mislabeled or 

ambiguous samples. In this study, Grad-CAM occasionally highlighted inconsistencies 

between heatmap focus and ground truth labels, which may indicate labeling noise in the 

training set-especially for borderline cases. 

 

Limitations of Grad-CAM 

While Grad-CAM provides a useful interpretability layer, it has known limitations: 

(i) The heatmaps are relatively coarse and do not highlight fine-grained features. 

(ii) Grad-CAM is sensitive to the choice of layer and model architecture. 

(iii) It only visualizes positive class influence and may not show areas contributing to 
negative decisions. 

 
Despite these caveats, Grad-CAM remains one of the most practical and effective 

interpretability tools for CNN-based image classification in medical AI. 

 
Summary 
In summary, Grad-CAM was used to evaluate and visualize the decision-making process of 

individual CNN models and ensemble strategies for DR classification. The visualizations 

confirmed that high-performing models focused on clinically relevant features, 

particularly for Classes 2–4. Misclassification analysis using Grad-CAM also helped identify 

common model failure patterns and emphasized the need for quality input data. Overall, 

the integration of Grad-CAM added a valuable interpretability dimension to this study, 

reinforcing the reliability and potential clinical utility of the proposed system. 

 
Results and Discussion 
This section presents the performance outcomes of the individually trained CNN models 

and the proposed ensemble strategies for diabetic retinopathy (DR) classification. The 

results are analyzed in terms of the evaluation metrics described in Section 3.3, including 

accuracy, precision, recall, F1-score, AUC, and confusion matrices. Furthermore, 

comparative discussions are provided to highlight the strengths, limitations, and practical 

implications of each model and ensemble configuration. 

 
Individual CNN Model Performance 

The three base models-ResNet18, ResNet50, and EfficientNetB3-were evaluated after 

training using the APTOS 2019 Blindness Detection dataset. Table 1 summarizes the 

performance metrics achieved on the 20% validation set. 
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TABLE I.  PERFORMANCE OF INDIVIDUAL CNN MODELS 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

ResNet18 82.10 81.63 82.10 81.62 

ResNet50 83.20 84.25 83.20 82.98 

EfficientNetB3 76.09 58.80 51.96 52.02 

 

Among the three, ResNet50 consistently achieved the best performance across all 

metrics, demonstrating stronger generalization and better discrimination across all DR 

classes. It especially outperformed others in Class 3 and Class 4 detection, which are often 

underrepresented. ResNet18, while lightweight and faster to train, performed well across 

the board. EfficientNetB3, however, underperformed significantly and showed signs of 

misalignment with the preprocessing pipeline, which may have degraded its feature 

extraction capacity. 

 

Ensemble Model Performance 

To improve classification robustness and address individual model weaknesses, three 

ensemble strategies were implemented: majority voting, weighted voting, and stacking. 

Table 2 presents their respective validation results. 

 

PERFORMANCE OF ENSEMBLE MODELS 

Ensemble 

Method 

Accuracy Precision Recall F1-Score ROC AUC 

(Macro) 

PR AUC 

(Macro) 

Majority 

Voting 

84.54% 0.8010 

(Macro) 

0.6906 

(Macro) 

0.7245 

(Macro) 

0.9078 0.7050 

Weighted 

Voting 

85.28% 0.8517 

(Weighted) 

0.8528 

(Weighted) 

0.8472 

(Weighted) 

0.9089 0.7153 

Stacking 85.27% 0.7634 

(Macro) 

0.7051 

(Macro) 

0.7278 

(Macro) 

0.9330 0.7352 

 

The stacked ensemble outperformed all other configurations in terms of ROC AUC and PR 

AUC, including the best standalone CNN model. This result demonstrates the 

effectiveness of combining complementary model outputs through a meta-classifier 

(Random Forest in this case). The improvement in probabilistic metrics and calibration 

reflects stronger class balance and better predictive confidence, particularly in minority 

classes. Weighted voting, on the other hand, achieved the highest overall classification 

metrics due to the dominance of high-performing models like ResNet50. 
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Class-wise Analysis 

Class-wise performance revealed that all models performed best on Class 0 (“No DR”) 

due to its dominance in the dataset. However, performance dropped progressively for 

Classes 3 and 4, which represent severe and proliferative DR [24]. The stacked ensemble 

exhibited noticeable improvements in detecting these challenging classes, increasing 

recall and precision while reducing false negatives-an especially important factor in clinical 

contexts. 

The confusion matrices (not shown here for brevity) indicated that misclassifications 

mostly occurred between adjacent DR stages, such as Class 1 vs Class 2 and Class 2 vs Class 

3. These errors are consistent with the visual similarity between intermediate stages and 

the inherent difficulty of boundary classification in medical imaging. 

 

Impact of Ensemble Learning 

The use of ensemble learning significantly reduced model variance and improved 

generalizability [25]. Weighted voting allowed the ensemble to leverage the strengths of 

higher-performing models while dampening the effects of weaker ones. Stacking went 

further by learning inter-model relationships, which contributed to the highest scores in 

probabilistic measures like ROC AUC, PR AUC, and log loss. 

These results confirm that ensemble methods, particularly stacking, are well-suited for 

multiclass medical image classification tasks where class imbalance and visual overlap are 

prevalent challenges. Moreover, ensemble learning reduced overfitting tendencies 

observed in individual models, making them more stable across different training runs. 

 

Model Interpretability 

The integration of Grad-CAM, as discussed in Section 3.4, provided an essential 

interpretability layer. The heatmaps revealed that models, especially ResNet50 and the 

stacked ensemble, focused on medically relevant regions of the retina when making 

predictions. This further supports the validity of the proposed approach and increases its 

potential acceptability in real-world clinical settings. 

Visual inspection of Grad-CAM outputs also uncovered cases where incorrect predictions 

could be traced to image noise, low contrast, or ambiguous features-issues that might be 

improved through data cleaning or more targeted augmentation strategies. 

 

Discussion 

The overall results demonstrate that combining transfer learning, robust data 

preprocessing, and ensemble techniques can lead to high-performing and interpretable 



 

 
AUGUST, 2025 EDITIONS. INTERNATIONAL JOURNAL OF: 

 

     TIJSRAT 

SCIENCE RESEARCH AND TECHNOLOGY VOL. 9 

219 

E-ISSN 3026-8095 
P-ISSN 3027-1991 

deep learning models for DR detection. Although the dataset used (APTOS 2019) is 

relatively balanced compared to others, its class imbalance still posed a challenge that 

required careful metric selection and model design. 

While stacking introduced additional complexity in terms of training and inference time, 

the gains in AUC and interpretability justify the added overhead, particularly in high-stakes 

domains like healthcare. In deployment scenarios where computational efficiency is 

critical, the weighted voting ensemble may offer a better trade-off between performance 

and simplicity. 

 

Conclusion and Future Work 

This study proposed a robust deep learning framework for the classification of diabetic 

retinopathy (DR) severity levels using convolutional neural networks (CNNs), ensemble 

learning techniques, and interpretability tools. The approach involved training and 

evaluating three individual CNN architectures-ResNet18, ResNet50, and EfficientNetB3-on 

the APTOS 2019 Blindness Detection dataset, followed by ensemble modeling through 

majority voting, weighted voting, and stacked generalization. 

Experimental results demonstrated that ensemble methods significantly improved 

classification performance, particularly in handling class imbalance and distinguishing 

visually similar DR stages. Among all configurations, the stacking ensemble achieved the 

best ROC AUC (0.9330) and PR AUC (0.7352), showing superior generalization and 

predictive calibration compared to standalone models. Additionally, the use of Grad-CAM 

interpretability maps provided visual validation of the model's decision-making, 

reinforcing trust and transparency-critical aspects in clinical diagnostic settings [27]. 

The findings of this work confirm that combining multiple CNN models with ensemble 

strategies can produce high-performing and interpretable DR detection systems. The 

results also highlight the importance of evaluating models using class-sensitive metrics 

such as macro F1-score, especially in the context of imbalanced medical datasets. 

 

Future Work 

While the proposed system showed promising results, several areas remain open for 

future exploration: 

(i) Larger and More Diverse Datasets: Incorporating additional DR datasets (e.g., 

EyePACS, Messidor, or IDRiD) could improve generalization and reduce 

overfitting to a specific dataset distribution. 

(ii) Advanced Ensemble Architectures: Future work may involve exploring more 

complex ensemble methods, such as gradient boosting ensembles (e.g., XGBoost, 
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LightGBM) or meta-learners based on neural networks. 

(iii) Clinical Integration and Testing: Applying the model in real clinical settings, under 

the supervision of ophthalmologists, would help evaluate its reliability, usability, 

and diagnostic accuracy under practical conditions. 

(iv) Image Quality Assessment: Integrating an automated quality assessment pipeline 

to flag poor-quality fundus images could further reduce misclassifications caused 

by noise or artifacts. 

(v) Temporal Progression Modeling: Extending the system to analyze sequences of 

fundus images over time could support longitudinal DR progression prediction, a 

valuable tool for patient monitoring. 

(vi) Hardware Optimization for Deployment: Converting the trained models into 

optimized formats (e.g., ONNX or TensorRT) may support deployment on edge 

devices in resource-constrained environments [28]. 

 

Overall, the combination of deep learning, ensemble modeling, and interpretability tools 

as presented in this study provides a solid foundation for building effective, trustworthy, 

and scalable automated DR detection systems suitable for real-world healthcare 

applications. 
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